Hybrid Opacity in Berbice Dutch Creole

Michael Dow, Indiana University

Phonology 2013 @ UMass (November 9-10, 2013)

Highlights

- **Hybrid Opacity**: simultaneous under- and overapplication, e.g. nasal assimilation in Berbice, interacting with consonant deletion: /maNg-tε/ → [maŋ-tε] 'run-ANT'
- Nature of this interaction depends on framework architecture, may simply be underapplication—but same OT grammar can derive hybrid opacity scenario
- Of non-serial models of opacity, only Turbidity derives proper results, but claims interaction is completely transparent
- Does hybrid opacity exist? Generalized templates and experimental stimuli proposed for further identification

The problem: nasals in /ND/ block assimilation

Berbice: Dutch-based creole, Eastern Ijo substrate. Spoken in Guyana c. 1700-2005 (Kouwenberg 1994)

(1) Non-alternating environments: place contrast neutralized before oral stops

Word-initial	Intervocalic	Word-final	NC
m n	m n	m n	m n ŋ
[mafu] 'leech'	[huma] 'piranha'	[kam] 'comb'	[kamba] 'drum'
[nati] 'wet'	[kunu] 'stench'	[alen] 'alone'	[tondi] 'grease'
			[juŋgu] 'young'

(2) Optional agreement in [nimi]-type verbs

	NV#	<i>N</i> #	Anterior forms	Gloss
a.	[nimi]	[nim]	$[nim-t\varepsilon] \sim [nin-t\varepsilon]$	'know'
b.	[pama]	[pam]	$[pam-t\epsilon] \sim [pan-t\epsilon]$	'tell'
c.	[komu]	[kom]	$[kom-t\varepsilon] \sim [kon-t\varepsilon]$	'come'

(3) Agreement blocked in [mangi]-type verbs

	NDV#	<i>N</i> #	Anterior form	Gloss
a.	[tambu]	[tam]	[tam-tɛ], *[tan-tɛ]	'pound'
b.	[fɛndɛ]	[fɛn]	[fen-te]	'find'
c.	[maŋgi]	[maŋ]	[maŋ-tɛ], *[man-tɛ]	'run'

UR of verbs in (3) analyzed as /ND/-final, e.g. /taNb/ or /tamb/:

- Final V largely predictable
- General ban on voiced obstruent codas
- /NT#/ and /NTV#/ verbs
- Other class of non-alternating verbs, e.g. [samba], *[sam] 'groan'
- cf. Dow (2013) for more

Deletion account preferred over coalescence, ties together behavior of all classes and phonotactic generalizations (NB: coalescence removes overapplication aspect)

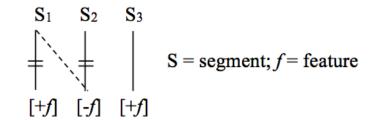
Comparing analyses

- Underspecification in rule-ordering: assimilation precedes consonant deletion, e.g. $/maNg-t\epsilon/ \rightarrow |mang-t\epsilon| \rightarrow [man-t\epsilon]$
- OT prefers homorganic inputs in this case (Lexicon Optimization)
- Optimality Theory with Candidate Chains (McCarthy 2007) derives attested results from both inputs, e.g. /maNg-tε/ OR /mang-tε/
 → [maŋ-tɛ], PRECEDENCE(ID[place], MAXC) specifies ID[place] violations should precede but not follow MAXC violations
 - (4) Homorganic input

/maŋg-tɛ/		*VOC	MaxC	PREC	AGREE	ID[place]
a.	<mang-te></mang-te>	*!				
b. <i>®</i>	<maŋg-tɛ, maŋ-tε=""> MAXC</maŋg-tɛ,>		*	*	*	
c.	<mang-te, man-te="" man-te,=""> MAXC, ID[place]</mang-te,>		*	**!		*

(5) Archiphonemic (or heterorganic) input

/maN	/maNg-tɛ/		MaxC	PREC	AGREE	ID[place]
a.	<mang-tε></mang-tε>	*!			*	
b.	<mang-tε, man-tε=""> MAXC</mang-tε,>		*	*!	*	
c.	<mang-tε, man-tε="" man-tε,=""> MAXC, ID[place]</mang-tε,>		*	*!*		*
d.	<mang-tε, mang-tε=""> ID[place]</mang-tε,>	*!				*
e. 🐨	<mang-tε, man-tε="" mang-tε,=""> ID[place], MAXC</mang-tε,>		*		*	*
f.	<mang-tε, man-tε="" mang-tε,=""> ID[place], MAXC, ID[place]</mang-tε,>		*	*!		**


- Turbidity (Goldrick 2001): covert levels of projected vs. pronounced output representations (<u>underlined</u> = projected, unpronounced)
 - (6) Turbidity account of hybrid opacity (adapted constraint notation)
 - PROJECTAGREE: Nasal + stop sequences must agree, pronounced or not.
 - NoPronounceVOC: Voiced obstruent codas must not be pronounced.
 - PRONOUNCE(C): Input consonants must be pronounced (no deletion).

/maN	g-tɛ/	PROJAGREE	NoPronVOC	Pron(C)	ID[place]
a.	Ngt	*!	*		
b.	ŋgt		*!		*
c.	N <u>g</u> t	*!			
d. @	ŋgt		 		*
e.	Nt	*!		*	
f.	nt		 	*!	*

 Other non-serial OT models of opacity (e.g. Comparative Markedness, McCarthy 2002; Local Constraint Conjunction, Smolensky 1995) fail: overapplication impossible

What is hybrid opacity, and must it exist?

- Berbice example as hybrid opacity depends on input /N/: possible (rule-ordering), unmotivated (OT-CC), or transparent (Turbidity)
- Hybrid opacity undocumented elsewhere—further identification and experimentation will better clarify
 - (7) Deletion template

- (8) Hypothetical example:
 - a. Regressive [voice] assimilation in consonant clusters: $/al-ta/ \rightarrow [al-ta], /at-ba/ \rightarrow [ad-ba]$
 - b. Reduction of complex codas, such that C_1C_2 clusters to C_1 : $|a|d \rightarrow [al]$, $|a|d-ba| \rightarrow [al-ba]$
- Deletion has 2 effects on assimilation, vs. other "dual interactions," e.g. FED COUNTERFEEDING in Tundra Nenets (Kavitskaya & Staroverov 2010)
- Apocope feeds debuccalization
- Debuccalization counterfeeds apocope
- Each process has one effect on the other
- (9) Experimental testing may provide more conclusive evidence

Cluster simplification: $C \rightarrow \emptyset / C_{\{C, \#\}}$, precedes: Nasal place assimilation

• Inability to acquire a hybrid opacity scenario may lend more credence to non-serial models of opacity (e.g. Turbidity)

Summary and conclusions

- Hybrid opacity's existence debatable: overapplication aspect must be motivated (ideally by alternations)
- Identification of clearer cases would prompt revisions to theory and taxonomy of opacity (e.g. differences from other dual interactions)
- If hybrid opacity must not exist, either...
- blocking mechanisms must be introduced to serial models of opacity (preventing overgeneration), or
- alternative, non-serial models of opacity may be preferred