Vowel-specific metrics of phonological nasalization in French Canadian Linguistics Association

> Michael Dow Université de Montréal

> > May 28, 2017

オロト オポト オヨト オヨト ニヨー ろくつ

Introduction $\bullet \circ \circ$	Phonetics 0000000	$\mathbf{Experiment}$ 00000	Discussion 0000	References 00	References 000
Plan					

1 Introduction

- 2 Phonetic background
 - Simple factors
 - Complex interactions
- 3 Experimental study

4 Discussion

5 References

Introduction $0 \bullet 0$	Phonetics 0000000	$\mathbf{Experiment}$ 00000	Discussion 0000	References 00	References 000
Problémat	tique				

• Experimental phonological accounts & theory are only as good as their data.

2/24

Introduction $0 \bullet 0$	Phonetics	Experiment	Discussion	References	References
	0000000	00000	0000	00	000
Probléma	tique				

- Experimental phonological accounts & theory are only as good as their data.
- Case study: Many instrumental studies on nasal coarticulation in French show high rates of nasality on high vowels (esp. Delvaux et al. 2008, Rochet & Rochet 1991, Spears 2006)...

Introduction $0 \bullet 0$	Phonetics 0000000	$\operatorname{Experiment}$ 00000	Discussion 0000	References 00	References 000
Problémat	tique				

- Experimental phonological accounts & theory are only as good as their data.
- Case study: Many instrumental studies on nasal coarticulation in French show high rates of nasality on high vowels (esp. Delvaux et al. 2008, Rochet & Rochet 1991, Spears 2006)...
- ... to the point where we might consider it phonological.

Introduction $0 \bullet 0$	Phonetics	Experiment	Discussion	References	References
	0000000	00000	0000	00	000
Probléma	tique				

- Experimental phonological accounts & theory are only as good as their data.
- Case study: Many instrumental studies on nasal coarticulation in French show high rates of nasality on high vowels (esp. Delvaux et al. 2008, Rochet & Rochet 1991, Spears 2006)...
- ... to the point where we might consider it phonological.
- But not all vowels are nasalized equal. How to fairly & accurately model nasality, then?

Introduction 00	Phonetics 0000000	$\operatorname{Experiment}$ 00000	Discussion 0000	References 00	References 000
Goals					

• Summarize the phonetic factors differentiating vowel qualities *vis-à-vis* ease of nasal coupling

Introduction 00	Phonetics 0000000	Experiment 00000	Discussion 0000	References 00	References 000
~ 1					
Goals					

- Summarize the phonetic factors differentiating vowel qualities *vis-à-vis* ease of nasal coupling
- Pilot a vowel-specific measurement of nasality for an instrumental corpus of French, and

Introduction 00	Phonetics	Experiment	Discussion	References	References
	0000000	00000	0000	00	000
Goals					

- Summarize the phonetic factors differentiating vowel qualities *vis-à-vis* ease of nasal coupling
- Pilot a vowel-specific measurement of nasality for an instrumental corpus of French, and
- Compare these results against durational data to show that /i, y/ nasalization in French is phonological.

Introduction	Phonetics	Experiment	Discussion	References	References
000	●○○○○○○	00000	0000	00	000
Plan					

- 2 Phonetic background
 - Simple factors
 - Complex interactions
- B Experimental study

4 Discussion

6 References

• Aerodynamics: High vowels produced with high degree of intraoral pressure → greater nasal airflow (e.g., Clarke & Mackiewicz-Krassowska 1977, Shosted 2012) and less velopharyngeal opening (e.g., Al-Bamerni 1983).

- Aerodynamics: High vowels produced with high degree of intraoral pressure → greater nasal airflow (e.g., Clarke & Mackiewicz-Krassowska 1977, Shosted 2012) and less velopharyngeal opening (e.g., Al-Bamerni 1983).
- Acoustics: Same amount of nasal coupling has stronger effects on high vowels (House & Stevens 1956).

- Aerodynamics: High vowels produced with high degree of intraoral pressure → greater nasal airflow (e.g., Clarke & Mackiewicz-Krassowska 1977, Shosted 2012) and less velopharyngeal opening (e.g., Al-Bamerni 1983).
- Acoustics: Same amount of nasal coupling has stronger effects on high vowels (House & Stevens 1956).
- **Perception:** Low vowels require much greater nasal coupling and time to be perceived as nasal, compared with high vowels (e.g., Maeda 1982).

Introduction	Phonetics	Experiment	Discussion	References	References
000	000000	00000	0000	00	000
Simple factors					
The low	> high pa	arameter			

• Articulation: Inherent velic position covaries with vowel height (e.g., Henderson 1984) — though not necessarily universally (e.g., Amelot & Rossato 2006).

Introduction 000	Phonetics 000000	Experiment 00000	Discussion 0000	References 00	References 000
Simple factors					
The low	> high pa	arameter			

- Articulation: Inherent velic position covaries with vowel height (e.g., Henderson 1984) though not necessarily universally (e.g., Amelot & Rossato 2006).
- Lower position on low vowels \rightarrow easier to nasalize (e.g., Straka 1955)?

6/24

Introduction 000	Phonetics 000000	Experiment 00000	Discussion 0000	References 00	References 000
Simple factors					
The low	> high pa	arameter			

- Articulation: Inherent velic position covaries with vowel height (e.g., Henderson 1984) though not necessarily universally (e.g., Amelot & Rossato 2006).
- Lower position on low vowels \rightarrow easier to nasalize (e.g., Straka 1955)?
- BUT also leads to "leakage" in oral contexts (Bell-Berti 1973, Chen & Wang 1975).

Introduction 000	Phonetics 0000000		Discussion 0000	References 00	References 000
Simple factors					
What's t	he proble	m?			

• If some vowels are easier to nasalize than others, similar percentages of coarticulation may not be directly comparable.

	Phonetics		Discussion	References	References
	0000000				
Simple factors					
What's t	he proble:	m?			

- If some vowels are easier to nasalize than others, similar percentages of coarticulation may not be directly comparable.
- Conflicting factors may lead to conflicting evidence, depending on the type of instrument used — for instance, articulatory could overreport low vowels, while aerodynamic overreports high.

	Phonetics		Discussion	References	References
	0000000				
Simple factors					
What's t	he proble:	m?			

- If some vowels are easier to nasalize than others, similar percentages of coarticulation may not be directly comparable.
- Conflicting factors may lead to conflicting evidence, depending on the type of instrument used — for instance, articulatory could overreport low vowels, while aerodynamic overreports high.
- Solution: Let's let each vowel quality define its own nasal threshold.

• Low vowels frequently longest in experimental studies (cf. Hajek & Maeda 2000 for references).

- Low vowels frequently longest in experimental studies (cf. Hajek & Maeda 2000 for references).
- Low vowels proposed to be inherently longest (cf. Laver 1994, Lehiste 1970) and most sonorous (de Lacy 2006).

- Low vowels frequently longest in experimental studies (cf. Hajek & Maeda 2000 for references).
- Low vowels proposed to be inherently longest (cf. Laver 1994, Lehiste 1970) and most sonorous (de Lacy 2006).
- Languages show a diachronic preference for long nasal vowels (Hajek 1997).

Introduction 000	Phonetics 0000000	Experiment 00000	Discussion 0000	References 00	References 000
Complex interact	tions				
Duration	favours l	ow vowels			

- Low vowels frequently longest in experimental studies (cf. Hajek & Maeda 2000 for references).
- Low vowels proposed to be inherently longest (cf. Laver 1994, Lehiste 1970) and most sonorous (de Lacy 2006).
- Languages show a diachronic preference for long nasal vowels (Hajek 1997).
- Increased duration moderately improves perception of nasality (Lintz & Sherman 1961, Whalen & Beddor 1989).

Introduction 000	Phonetics 0000000	Experiment 00000	Discussion 0000	References 00	References 000
Complex interact	tions				
Duration	favours l	ow vowels			

- Low vowels frequently longest in experimental studies (cf. Hajek & Maeda 2000 for references).
- Low vowels proposed to be inherently longest (cf. Laver 1994, Lehiste 1970) and most sonorous (de Lacy 2006).
- Languages show a diachronic preference for long nasal vowels (Hajek 1997).
- Increased duration moderately improves perception of nasality (Lintz & Sherman 1961, Whalen & Beddor 1989).
- Lower aperture may then favour nasality.

Introduction 000	Phonetics 0000000	$\mathbf{Experiment}$ 00000	Discussion 0000	$\operatorname{References}$ 00	References 000
Complex interact:	ions				
		ls high vov mechanical nas			

• High vowels are the shortest in the same literature, and (reminder) the easiest to nasalize from most perspectives.

Introduction 000	Phonetics 0000000		Discussion 0000	$\operatorname{References}$ 00	References 000
Complex interact	ions				
		ls high vov mechanical nas			

- High vowels are the shortest in the same literature, and (reminder) the easiest to nasalize from most perspectives.
- The velum as a sluggish articulator (Bell-Berti 1993, Ohala 1975), with oro-nasal transition times around 250 msec. (e.g., Bell-Berti 1980, Dalston & Seaver 1990).

	Phonetics		Discussion	References	References
000	000000	00000	0000	00	000
Complex interact	tions				
What's t	he proble	m again?			

• "Sloppy" articulation may then lead to inflated percentages on high vowels – unintentionally but largely nasal.

A (10) A (10) A (10)

Introduction 000	Phonetics 0000000	Experiment 00000	Discussion 0000	References 00	References 000
Complex interact	tions				
What's t	he proble	m again?			

- "Sloppy" articulation may then lead to inflated percentages on high vowels unintentionally but largely nasal.
- Reports of significant high vowel nasalization in French may be an artefact of this interaction.

	Phonetics		Discussion	References	References
	000000				
Complex interact	tions				
What's t	he problem	n again?			

- "Sloppy" articulation may then lead to inflated percentages on high vowels – unintentionally but largely nasal.
- Reports of significant high vowel nasalization in French may be an artefact of this interaction.
- Solution: Let's see how nasality interacts with duration, vowel by vowel (à la Solé 1992, 2007).

Introduction	Phonetics	Experiment	Discussion	References	References
000	0000000	•0000	0000	00	000
Plan					

1 Introduction

- 2 Phonetic background
 - Simple factors
 - Complex interactions
- 3 Experimental study

Discussion

5 References

-

Introduction	Phonetics	Experiment	Discussion	References	References
000	0000000	o●000	0000	00	000
Methodo	logy				

• **Participants:** 20 native French speakers (Finistère and Somme departments)

Introduction	Phonetics	Experiment	Discussion	References	References
000	0000000	00000	0000	00	000
Methodo	ology				

- **Participants:** 20 native French speakers (Finistère and Somme departments)
- Instrumentation: Glottal Enterprises nasometer (NAS-1 SEP Clinic)

Introduction	Phonetics	Experiment 00000	Discussion	References	References
000	0000000		0000	00	000
Methodo	logy				

- **Participants:** 20 native French speakers (Finistère and Somme departments)
- Instrumentation: Glottal Enterprises nasometer (NAS-1 SEP Clinic)
- Materials: Reading list of 3-word expressions (article + noun + adjective):

Introduction	Phonetics	Experiment $0 \bullet 000$	Discussion	References	References
000	0000000		0000	00	000
Methodo	ology				

- **Participants:** 20 native French speakers (Finistère and Somme departments)
- Instrumentation: Glottal Enterprises nasometer (NAS-1 SEP Clinic)
- Materials: Reading list of 3-word expressions (article + noun + adjective):
 - Target vowel: Oral (/a, e, ø, o, i, y, u/) or nasal (/α, ε, ɔ, œ/) in pre-nasal (typically /n/) or non-nasal contexts (typically word-final)

Introduction	Phonetics	Experiment	Discussion	References	References
000	0000000	00000	0000	00	000
Methodo	ology				

- **Participants:** 20 native French speakers (Finistère and Somme departments)
- Instrumentation: Glottal Enterprises nasometer (NAS-1 SEP Clinic)
- Materials: Reading list of 3-word expressions (article + noun + adjective):
 - Target vowel: Oral (/a, e, ø, o, i, y, u/) or nasal (/α, ε, ɔ, œ/) in pre-nasal (typically /n/) or non-nasal contexts (typically word-final)
 - Examples:

Introduction	Phonetics	Experiment	Discussion	References	References
000	0000000	00000	0000	00	000
Methodo	ology				

- **Participants:** 20 native French speakers (Finistère and Somme departments)
- Instrumentation: Glottal Enterprises nasometer (NAS-1 SEP Clinic)
- Materials: Reading list of 3-word expressions (article + noun + adjective):
 - Target vowel: Oral (/a, e, ϕ , o, i, y, u/) or nasal (/ $\tilde{\alpha}$, $\tilde{\epsilon}$, $\tilde{\beta}$, $\tilde{\omega}$ /) in pre-nasal (typically /n/) or non-nasal contexts (typically word-final)
 - Examples:

 $le \ certific<u>at \ s</u>ecret = a\#s$

Introduction	Phonetics	Experiment	Discussion	References	References
000	0000000	0•000	0000	00	000
Methodo	ology				

- **Participants:** 20 native French speakers (Finistère and Somme departments)
- Instrumentation: Glottal Enterprises nasometer (NAS-1 SEP Clinic)
- Materials: Reading list of 3-word expressions (article + noun + adjective):
 - Target vowel: Oral (/a, e, ø, o, i, y, u/) or nasal (/α, ε, ɔ, œ/) in pre-nasal (typically /n/) or non-nasal contexts (typically word-final)
 - Examples:

 - **2**la partis<u>ane s</u>arcastique = an#s

A (10) A (10) A (10)

Introduction	Phonetics	Experiment	Discussion	References	References
000	0000000	00000	0000	00	000
Methodo	ology				

- **Participants:** 20 native French speakers (Finistère and Somme departments)
- Instrumentation: Glottal Enterprises nasometer (NAS-1 SEP Clinic)
- Materials: Reading list of 3-word expressions (article + noun + adjective):
 - Target vowel: Oral (/a, e, ø, o, i, y, u/) or nasal (/α, ε, ɔ, œ/) in pre-nasal (typically /n/) or non-nasal contexts (typically word-final)
 - Examples:

 - 2 la partis<u>ane s</u>arcastique = an#s

(人間) トイヨト イヨト

Introduction	Phonetics	Experiment	Discussion	References	References
000	0000000	0•000	0000	00	000
Methodo	ology				

- **Participants:** 20 native French speakers (Finistère and Somme departments)
- Instrumentation: Glottal Enterprises nasometer (NAS-1 SEP Clinic)
- Materials: Reading list of 3-word expressions (article + noun + adjective):
 - Target vowel: Oral (/a, e, ø, o, i, y, u/) or nasal (/α, ε, 5, *α*) in pre-nasal (typically /n/) or non-nasal contexts (typically word-final)
 - Examples:

 - 2 la partis<u>ane s</u>arcastique = an#s
- **Procedure:** Self-paced reading task. List(s) randomized 3 times for each speaker.

$\begin{array}{c} \text{Introduction} \\ \text{000} \end{array}$	Phonetics	Experiment	Discussion	References	References
	0000000	00●00	0000	00	000
Measure	ments & (Calculation	lS		

• Energy of oral and nasal channels of each vowel (2,759 total) taken at 5 msec steps, also total duration

$\begin{array}{c} \text{Introduction} \\ \text{000} \end{array}$	Phonetics	Experiment	Discussion	References	References
	0000000	00●00	0000	00	000
Measurer	ments & C	Calculation	S		

- Energy of oral and nasal channels of each vowel (2,759 total) taken at 5 msec steps, also total duration
- Nasal threshold (Vowel- and speaker-specific): mean nasal energy of each oral vowel type in oral contexts + 2sd

Introduction 000	Phonetics	Experiment	Discussion	References	References
	0000000	00●00	0000	00	000
Measurer	ments & (Calculation	S		

- Energy of oral and nasal channels of each vowel (2,759 total) taken at 5 msec steps, also total duration
- Nasal threshold (Vowel- and speaker-specific): mean nasal energy of each oral vowel type in oral contexts + 2sd
- Nasal phase: no. points whose nasal energy > nasal threshold (of most interest for vowels in **pre-nasal** settings)

Introduction 000	Phonetics	Experiment	Discussion	References	References
	0000000	00●00	0000	00	000
Maagumar	monta la (Calculation	a		

- Energy of oral and nasal channels of each vowel (2,759 total) taken at 5 msec steps, also total duration
- Nasal threshold (Vowel- and speaker-specific): mean nasal energy of each oral vowel type in oral contexts + 2sd
- Nasal phase: no. points whose nasal energy > nasal threshold (of most interest for vowels in **pre-nasal** settings)
- Hypothetical example:
 - Mean nasal energy of all /i/ vowels of speaker x in non-nasal settings = $0.023 \text{ Pa}^2 \cdot \text{s}$; sd = 0.019
 - x's /i/ nasal threshold = 0.061
 - How many points of /i/ in /in/ exceed? Overall V length?

・ 同 ト ・ ヨ ト ・ ヨ ト

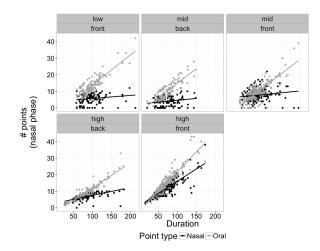
Introduction 000	Phonetics 0000000	Experiment $000 \bullet 0$	Discussion 0000	References 00	References 000
Results					

Average vowel nasality threshold & standard deviation

Vowel	Threshold	sd
/a/	0.015	0.014
/e/	0.021	0.018
/ø/	0.032	0.032
/o/	0.024	0.027
/i/	0.023	0.019
/y/	0.024	0.017
/u/	0.026	0.022

 Low vowels appear to have lower threshold, with fewer differences within & among mid and high vowels (note /ø/, though).

・ロト ・ 同ト ・ ヨト ・ ヨト


Introduction 000	Phonetics 0000000	Experiment $000 \bullet 0$	Discussion 0000	References 00	References 000
Results					

Average vowel nasality threshold & standard deviation

Vowel	Threshold	sd
/a/	0.015	0.014
/e/	0.021	0.018
/ø/	0.032	0.032
/o/	0.024	0.027
/i/	0.023	0.019
/y/	0.024	0.017
/u/	0.026	0.022

- Low vowels appear to have lower threshold, with fewer differences within & among mid and high vowels (note /ø/, though).
- NB: Some speakers show greater diversity among thresholds than others.

Introduction 000	Phonetics	Experiment	Discussion	References	References
	0000000	0000●	0000	00	000

Nasal phase duration increases only for high front vowels, suggesting gestural anchorage with respect to V, not N.

Introduction	Phonetics	Experiment	Discussion	References	References
000	0000000	00000	•000	00	000
Plan					

1 Introduction

- 2 Phonetic background
 - Simple factors
 - Complex interactions
- 3 Experimental study

4 Discussion

5 References

Introduction 000	Phonetics 0000000	$\mathbf{Experiment}$ 00000	Discussion o●oo	References 00	References 000
Findings					

• Vowel-specific thresholds appear at first glance useful, though unclear how well they reflect phonetic pressures.

Introduction 000	Phonetics 0000000	$\operatorname{Experiment}$ 00000	Discussion o●oo	References 00	References 000
Findings					

- Vowel-specific thresholds appear at first glance useful, though unclear how well they reflect phonetic pressures.
- Even after attempting to remove acoustic/aerodynamic bias, high (front) vowels demonstrate high levels of nasal coarticulation.

Introduction	Phonetics	Experiment	Discussion	References	References
000	0000000	00000	o●oo	00	000
Findings					

- Vowel-specific thresholds appear at first glance useful, though unclear how well they reflect phonetic pressures.
- Even after attempting to remove acoustic/aerodynamic bias, high (front) vowels demonstrate high levels of nasal coarticulation.
- Though on average shortest in the corpus, these vowels demonstrate a nasal phase increasing proportionately to their overall duration, suggesting a deliberate, phonological function.

Introduction	Phonetics	Experiment	Discussion	References	References
000	0000000	00000	00●0	00	000
Open qu	estions				

• /i,y/ nasalization seemingly capped around 50%. Why, and does phonology need to take this into account?

Introduction	Phonetics	Experiment	Discussion	References	References
000	0000000	00000	00●0	00	000
Open qu	estions				

- /i,y/ nasalization seemingly capped around 50%. Why, and does phonology need to take this into account?
- Progressive nasalization is more pervasive and intense in French. Is it phonological as well?

Introduction	Phonetics	Experiment	Discussion	References	References
000	0000000	00000	00●0	00	000
Open qu	estions				

- /i,y/ nasalization seemingly capped around 50%. Why, and does phonology need to take this into account?
- Progressive nasalization is more pervasive and intense in French. Is it phonological as well?
- \bullet Does syllable structure matter, e.g., what about internal /i.n/?

Int	roduction	Phonetics	Experiment	Discussion	References	References
00	0	0000000	00000	000●	00	000

Fin

(日)

→ + Ξ →

Introduction	Phonetics	Experiment	Discussion	References	References
000	0000000	00000	0000	●0	000
Plan					

1 Introduction

- 2 Phonetic background
 - Simple factors
 - Complex interactions
- 3 Experimental study

Discussion

6 References

-

Introduction	Phonetics	Experiment	Discussion	References $\circ \bullet$	References
000	0000000	00000	0000		000
Acknowle	doements	2			

Thanks to the colleagues and the audience members of NAPhC 2016 & mfm 2017 who have interacted with me on this topic. Much gratitude in particular to Karthik Durvasula for his insights concerning nasal thresholds and vowel quality; all errors in the implementation remain my own. Data collection funded by the National Science Foundation, Doctoral Dissertation Grant #1360758.

Introduction	Phonetics	Experiment	Discussion	References	References
000	0000000	00000	0000	00	●●●
Reference	es I				

- Al Bamerni, A. H. (1983). Oral, velic and laryngeal coarticulation across languages. PhD thesis, University of Oxford.
- Amelot, A. and Rossato S. (2006). Velar movements for the feature [±nasal] for two French speakers. In Proceedings of 7th International Seminar on Speech Production, Ubatuba, pages 459–467.
- Bell Berti, F. (1973). The velopharyngeal mechanism: an electromyographic study. Haskins Laboratories Status Report on Speech Research (Supplement).
- Bell Berti, F. (1976). An electromyographic study of velopharyngeal function in speech. Journal of Speech and Hearing Research, 19:225-240.
- Bell Berti, F. (1980). Velopharyngeal function: a spatial-temporal model. In Lass, N. J., editor, Speech and Language: Advances in Basic Research and Practice, vol. 4, pages 291–316. Academic Press, New York.
- Bell Berti, F. (1993). Understanding velic motor control: Studies of segmental context. In Huffman, M. K. and Krakow, R. A., editors, *Phonetics and Phonology, vol. 5: Nasals, Nasalization and the Velum*, pages 63–85. Academic Press, New York.
- Chen, M. Y. and Wang, W. S.-Y. (1975). Sound change: Actuation and Implementation. Language, 51:255-281.
- Clark, W. M. and Mackiewicz Krassowska, H. (1977). Variation in the oral and nasal pressure levels of vowels in changing phonetic contexts. *Journal of Phonetics*, 5:195–203.
- Dalston, R. M. and Seaver, E. J. (1990). Nasometric and phototransductive measurements of reaction times among normal adult speakers. *Cleft Palate Journal*, 27:61–67.
- de Lacy, P. V. (2006). Markedness: Reduction and preservation in phonology. Cambridge University Press, Cambridge.

イロト イポト イヨト イヨト

Introduction	Phonetics	Experiment	Discussion	References	$\substack{\bullet \bullet \bullet}$
000	0000000	00000	0000	00	
Reference	es II				

- Delvaux, V., Demolin, D., J-Tarmegnies, B., and Soquet, A. (2008). The aerodynamics of nasalization in French. Journal of Phonetics, 36(4):578–606.
- Hajek, J. (1997). Universals of sound change in nasalization. Blackwell, Oxford.
- Hajek, J. and Maeda, S. (2000). Investigating universals of sound change: The effect of vowel height and duration on the development of distinctive nasalization. In Broe, M. and Pierrehumbert, J., editors, *Papers in Laboratory Phonology V*, pages 52–69. Cambridge University Press, Cambridge.
- Henderson, J. (1984). Velopharyngeal function in oral and nasal vowels: A cross-language study. PhD thesis, University of Connecticut.
- House, A. S. and Stevens, K. N. (1956). Analog studies of the nasalization of vowels. Journal of Speech and Hearing Disorders, 21(2):218-232.
- Laver, J. (1994). Principles of Phonetics. Cambridge University Press, Cambridge.
- Lehiste, I. (1970). Suprasegmentals. MIT Press, Cambridge, MA.
- Lintz, L. B. and Sherman, D. (1961). Phonetic elements and perception of nasality. Journal of Speech and Hearing Research, 4:381–396.
- Maeda, S. (1982). Acoustic cues for vowel nasalization: A simulation study. Journal of the Acoustical Society of America, 72, Suppl. 1:S102.
- Ohala, J. J. (1975). Phonetic explanations for nasal sound patterns. In Ferguson, C., Hyman, L., and Ohala, J. J., editors, Nasálfest: Papers from a Symposium on Nasals and Nasalization, pages 289-316. Stanford University, Department of Linguistics.
- Rochet, A. P. and Rochet, B. L. (1991). The effect of vowel height on patterns of assimilation nasality in French and English. In Proceedings of the 12th International Congress of Phonetic Sciences, vol. 3, pages 54–57, Aix-en-Provence.

イロト イポト イヨト イヨト

Introduction 000	Phonetics	Experiment	Discussion	References	References
	0000000	00000	0000	00	●●●
Reference	es III				

- Shosted, R. (2012). A descriptive approach to the measurement of nasalization. NWAV 41.
- Solé, M. J. (1992). Phonetic and phonological processes: The case of nasalization. Language and Speech, 35(1):29–43.
- Solé, M. J. (2007). The stability of phonological features within and across segments: The effect of nasalization on frication. In Prieto, P., Mascaró, J., and Solé, M. J., editors, Segmental and Prosodic Issues in Romance Phonology, pages 41–65. John Benjamins, Amsterdam.
- Spears, A. (2006). Nasal coarticulation in the French vowel /i/: A phonetic and phonological study. Master's thesis, University of North Carolina at Chapel Hill.
- Straka, G. (1955). Remarques sur les voyelles nasales, leur origine et leur évolution en français. Revue de Linguistique Romane, 19:245–274.
- Whalen, D. H. and Beddor, P. S. (1989). Connections between nasality and vowel duration and height: Elucidation of the Eastern Algonquian intrusive nasal. *Language*, 65:457–486.

イロト イポト イヨト イヨト