A corpus study of phonological factors in novel English blends

Annual conference of the CLA (University of Regina)

Michael Dow Université de Montréal

May 30, 2018

Introduction

Introduction

• "Pussy blends" are becoming more and more commonplace online (popularized by "one thicc bih" meme), for instance thick pussy > thussy:

Jean shorts have to be tight and then i [sic] get a thussy and it's annoying (step2myworld, 2018, May 22)

- Irregularity of what a single blend can mean, e.g. *thussy* < Thor, Thanos, Margaret Thatcher, etc.
- Irregularity of what form a single subject will yield, e.g. Thanos also > thanussy; Margaret Thatcher also > thatchussy

Previous study

A pilot study (Dow 2018) of ~100 forms found:

- Contribution of material from first word (W₁) increases if longer than W₂ (i.e., "pussy") and if not directly expressed in the meme or thread (= "novel")
- Equal preference between onset-only and CVC₁ contribution of W₁ in non-novel forms
- Greater W₁ contribution when containing low sonority-high sonority CC juncture (e.g. Manray > manrussy) and internal sC clusters (e.g. toadstool > toadstussy)
- Internal fricatives and < r > encourage loss of < u > from W_2 (e.g. Ms. Puff > puffsy, Barney > barsy)

Today

Introduction

Preliminary findings of an expanded corpus study.

- Q: What implicit factors are at play, i.e., what makes a good (or bad) "pussy blend"?
- A: W₁ contribution increases as a function of source word length (up to final rhyme); W₂ contribution remains constant.
- Q: Can we consider these words as true blends? If not, what else could they be?
- A: These words go against a number of properties of blends. They might instead be considered as mid-clipped compounds.

Outline

- Introduction
- 2 Meme
- 3 Blending
- 4 Methodology
- Results
- 6 Discussion

Meme me up, Scotty

-(u)ssy blends & the "one thicc bih" meme

- Appearance & explosion of "one thicc bih" meme (text and Ditty videos, e.g. Fig. 1) in May 2017
- Format: "x is one thicc bih, let me see that y"; x = character or famous personality; y = blend of x (or related word) and pussy

Fig. 1: Babadook > babussy Source: dcparkers, 06/2017

What's in a meme?

- Documented -(u)ssy forms date back to early 2010s in gay slang, re-popularized by an April 2017 Tumblr post, in particular:
 - Boy, man > bussy, mussy
 - Throat > thrussy
- thice & bih AAVE slang (together \approx "sexy individual"), each documented back as far back as early 2000s

Life cycle of a meme

- Widespread media recognition (e.g. New York Magazine, Buzzfeed) → Ditty app #1 on iTunes store (May 2017)
- Decline around July 2017 (Fig. 2)

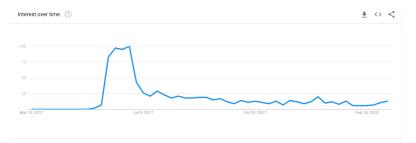


Fig. 2: "one thicc bih" in Google trends

Life after thiccness

- Popularity hard to quantify outside of meme: no substring searches on Twitter
- Several individual searches turn up recent results, though not as common as in summer 2017
- Remains to be seen if the process and/or certain forms survive, but "not dead yet" for the moment

Why study it?

- Memetic nature of "ussification" may resolve some empirical problems in study of blends:
 - Difficulty of automatic collection/recognition (Fradin 2015)
 → ease of collecting large corpus of meme
 - High degree of variation within and across languages (different "species") \longrightarrow controlled setting (W₂ remains constant) allows for isolation of factors in W₁
 - Differing degrees of felicity → several metrics (e.g., meme-user judgments, retweets & likes) can make sense of variation

Will it blend?

Properties of blends

- Definition: "[I]ntentional coinage of a new word by fusing parts of at least two source words of which either one is shortened in the fusion and/or where there is some form of phonemic or graphemic overlap of the source words" (Gries 2004)
- Three salient properties (Fradin 2015)
 - No preservation of lexical integrity: stems are rarely maintained intact & their alteration is variable
 - No fixed pattern of compositionality: head member is unpredictable
 - "Type hapaxes": blends cannot form series (e.g. élevage 'breeding' + vache 'cow' \longrightarrow élevache 'cow breeding' but *élechien 'dog breeding')

Overlap

- What determines the respective contribution and order of words in a blend?
- Semantic motivation (*brunch*) vs. phonological selection *glitterati*, cf. Fradin's (2015) criterion of overlap

	A. Trunc. $=$ both	B. Trunc. $= 1$		C. Trunc. $= 2$	D. Trunc. $= 0$
+ov	daxpór	knáuros		Müllionärin	Paradiesel
+LIN	daxáf × laxpór	knástos × áuros		Müll × Millionärin	$Paradies \times Diesel$
+ov	dialügisch	carnibbleous		_	hypocritiquement
-LIN	dialogisch × Lüge	carniverous	×		hypocritement ×
		nibble			critique
-ov	brunch	klafúda		smothercate	sálkal
+LIN	$break fast \times lunch$	klára × fúda		$smother \times suffocate$	sál × kál
-ov	agitprop	_		_	rajolivissant
-LIN	$agitation \times propag.$				ravissant × joli

Fig. 3: Typology of blends (Fradin 2015)

Chunnel vs. brunch

- Gries' (2004) Similarity Index (SI), proportionate amount of material contributed by each word:

 - \bullet < br > eakfast + l < unch > = 0.3
- Average SI of intentional & error-driven blends ≈ 0.5 , vs. random word pairings ≈ 0.3

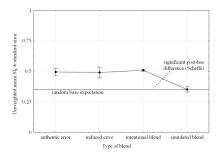


Fig. 4: SI by blend type

Extragrammaticality \neq irregularity

- Debate over blending as morphological (e.g., Bat-El 1996, Plag 2003) vs. extragrammatical (e.g., Bauer 1988, Dressler 2000) process
- Extragrammaticality does not exclude influence of regular/universal linguistic forces, especially phonological for blends (Fradin, Montermini & Plénat 2009)
- Other peripheral (informal) processes evidence knowledge of grammar-external structures or forces, e.g., expletive infixation (McCarthy 1982), *shitgibbons* (Tessier & Becker 2018)

Blend-trends

- The shorter source word of a blend more likely to contribute more information for intelligibility (Kaunisto 2000)
- Gries' (2004) results confirm this + a (competing?) tendency for W_2 to contribute more:

which word	which word contributes more to the blend?			
is larger?	=	source word ₁	source word ₂	totals
=	47 (++)	22 ()	53	122
source word ₁	58	45 ()	211 (+++)	314
source word ₂	125	316 (+++)	111 ()	552
column totals	230	383	375	988

Fig. 5: Contribution by length, phonemes

Methodology

Corpus

- 4450 Tweets scraped using GetOldTweets
- Criteria:
 - June 2017 August 2017
 - Contains phrases "one thicc bih" & "see that"
- Information automatically gathered:
 - Username
 - Date
 - Retweets & favourites
 - Link, ID
 - Text

Processing

- First 1500 manually annotated for:
 - Full referent
 - Deduced W₁ "base" & contribution
 - W₂ contribution
 - Standardized blend word (e.g. reduction of yyyyy to y)
 - Novelty of blend (if $W_1 \neq \text{referent}$)
- Unclear forms (e.g. inside jokes), tweets using existing words (e.g. Claire de Lune > Debussy), and retweets/identical tweets excluded \longrightarrow 1334 forms
- Some educated guesses on bases (e.g., Chuck E. *Cheese* > chussy)

ntroduction Meme Blending **Methodology** Results Discussion References 000 0000 0000 00000 00000 00000 00000

Users & lifespan

- 1156 unique users
- Max no. tweets/user = 6, mean 1.2
- Peak popularity in corpus at end June, declines early in July (Fig. 6, cf. Fig 2)

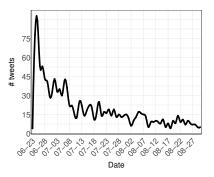


Fig. 6: No. tweets over time in annotated corpus

More processing

- Generous count of shared graphemes between words, e.g., graphemes in Bass > bassy: $W_1 = 4$, $W_2 = 3$
- Number of syllables identified as number of vowels (digraphs & graphemes such as <i> in <-tion> pre-processed), manually verified

- Proportion of material each word contributes to the blend (Gries 2004)
- Calculation performed on graphemes (G = no. graphemes, r = root, c = contribution to blend, b = blend), generous interpretation:

$$\frac{\left(\frac{G_{c1}}{G_{r1}} \times \frac{G_{c1}}{G_b}\right) + \left(\frac{G_{c2}}{G_{r2}} \times \frac{G_{c2}}{G_b}\right)}{2}$$

• For example, syllabus > syllabussy:

$$\frac{\left(\frac{8}{8} \times \frac{8}{10}\right) + \left(\frac{4}{5} \times \frac{4}{10}\right)}{2} = 0.56$$

Results

Anecdotes from the data

- /-əsi/ final words rare in corpus but highly felicitous; not specially quantified by current measures (e.g. democracy > democrasy)
- Non-contiguous blends also rare but may be of further interest, for instance:
 - octoling chocolate > octochussy
 - hentai Trump > hentrumpussy
- Presence of "intrusive" letters (belonging to neither word) in a handful of forms:
 - \bullet <r> (e.g. Fionn > fiorussy)

 - ① C_1 (e.g. Gao > gagussy, Cameron > cacussy, me > memussy)

Preliminary numbers

- Only 130 forms (9.7%) have motivated graphemic overlap (i.e. <u-u> or <p-p> overlap)
- 1187 forms (88.7%) are non-novel
- <ussy> by far the most comment W_2 contribution (1238), vs. <pussy> (50) and <ssy> (50)
- Only 114 forms (8.5%) have true hiatus at juncture (i.e., <u-u> overlap ignored, as in *communism* > *commussy*)
- Mean SI = 0.37 (non-novel), 0.42 (novel)
- Sonority profile of last 2 consonants of CC(C)-final W₁ contribution: even (27), rising (84), falling (161)

Syllable size

Preference for 1-syllable W_1 contribution over onset-only regardless of novelty:

Condition	Onset-only	1σ	2σ	3σ	4σ	5σ
Non-novel	286	719	151	27	1	0
Novel	8	61	63	13	3	2

Table 1: No. forms per W₁ syllable contribution by novelty

Expanded syllables, W_1

Non-base-final consonant sequences & <u-u> junctures simplified. Max 2 syllables.

Shape	Count	Count	
Snape	(Non-novel)	(Novel)	
C	208	3	
$^{\rm CC}$	106	6	
CCC	2	0	
CV	62	3	
CVC	466	26	
CVCC	183	28	
CVCCC	18	4	
CVCV	31	6	
CVCVC	63	42	
CVCVCC	19	14	
CVCVCCC	2	1	

Table 2: W₁ contribution syllable shape by novelty

Results (graphemes)

	Condition	$Gr(W_1)$	$Gr(W_2)$	Loss	Count
	$W_1 < W_2$	2.5	4	1.2	235
Non-novel	$W_1 = W_2$	2.9	4	2.1	318
	$W_1 > W_2$	3.8	4	3.5	634
	$W_1 < W_2$	3.4	4	0.5	23
Novel	$W_1 = W_2$	4.1	4	0.9	33
	$W_1 > W_2$	6	4	1.9	95

Table 3: Mean grapheme (Gr) contribution & loss by novelty and relative length

ntroduction Meme Blending Methodology **Results** Discussion Reference

Results (syllables)

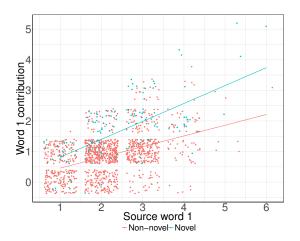


Fig. 7: No. syllables, source word vs. contribution (W₁)

Discussion & future work

Findings

- Grapheme contribution of W₁ increases with source word length regardless of novelty, while W₂ contribution stays the same.
- Novel forms on average lose less information.
- Competing preference between C(VC) and "all but final rhyme" templates.
- Loss of $\langle u \rangle$ from W_2 is rare and currently not predictable by any factor.

Are they blends?

- -(u)ssy forms meet some criteria, but not series-like nature & tendency for W₁ to contribute more as it gets longer, esp. in novel forms
- Many forms are dependent, not transparency of form, for meaning
- Forced combination regardless of overlap: <chick>en + p<ussy> \longrightarrow chickussy (more common) vs. <Bloss>om +pu<ssy> \longrightarrow blossy
- Low SI, especially in non-novel forms
- May in fact be median-clipped compounds (Tournier 1985, Jamet 2009), e.g. $smoke\ fog > smog$, though not always distinguished from blends

Future work

- Finalization of corpus annotation
- Integration of stress & phoneme counts (size, contribution, better sonority profiles) into results
- Comparison with fandom pairing names (DiGirolamo 2012), especially stress match (location of juncture) & onset conservation (e.g. Clyde + Rani > Clani)
- Judgment task (variation & strength of factors)

Thank you!

Acknowledgments

- The makers of the Ditty app
- Darius Kazemi (maker of the UssyBot)
- The audience members of the MOT 2018 (including Jeffrey Lamontagne & Daniel Curie Hall)

Works Cited I

- Bat-El, O. (1996). Selecting the best of the worst: The grammar of Hebrew blends. *Phonology*, 13:283–328.
- Bauer, L. (1988). Introducing Linguistic Morphology. Edinburgh University Press, Edinburgh.
- Becker, M. and Tessier, A.-M. (2018). Vowel but not consonant identity and the very informal English lexicon. In *Proceedings of the 2017 Annual Meeting on Phonology*, pages 1–12.
- Bernard, F., Montermini, F., and Plénat, M. (2009). Morphologie grammaticale et extragrammaticale. In Fradin, B., Kerleroux, F., and Plénat, M., editors, *Aperçus de morphologie du français*, pages 21–45. Presses Universitaires de Vincennes, Saint-Denis.
- DiGirolamo, C. M. (2012). The fandom pairing name: Blends and the phonology-orthography interface. *Names*, 60(4):231–243.
- Dow, M. (2018). Let me see that truncussy: Elucidating patterns in a novel blending meme. Montreal-Ottawa-Toronto Phonology Workshop.
- Dressler, W. U. (2000). Extragrammatical vs. marginal morphology. In Doleschal, U. and Thornton, A., editors, *Marginal and extragrammatical morphology*, pages 386–413. Lincom Europa, München.

Works Cited II

- Fradin, B. (2015). Blending. In Müller, P. O., Ohnheiser, I., Olsen, S., and Rainer, F., editors, Word-formation. An international handbook of the languages of Europe, pages 386–413. De Gruyter Mouton, Berlin.
- Gries, S. T. (2004). Some characteristics of English morphological blends. In Papers from the 38th Regional Meeting of the Chicago Linguistics Society, Vol. 2, pages 201–216.
- Jamet, D. (2009). A morphophonological approach to clipping in English: Can the study of clipping be formalized? Lexis. Journal in English Lexicology, (HS 1).
- Kaunisto, M. (2000). elations and proportions in English blend words. Fourth Conference of the International Quantitative Linguistics Association.
- McCarthy, J. J. (1982). Prosodic structure and expletive infixation. *Language*, pages 574–590.
- Plag, I. (2003). Word-Formation in English. Cambridge University Press, Cambridge.
- Tournier, J. (1985). Introduction descriptive à la lexicogénétique de l'anglais contemporain. Champion Books.

