Subsegmental interactions between affrication and devoicing in Québec French 2019 Annual Meeting of the Canadian Linguistics Association University of British Columbia

> Michael Dow Université de Montréal

> > June 3, 2019

Introduction

Introduction $\bullet 000$	Affrication	Methodology	Results & Disc.	Conclusion	References
	00000000	000	00000	00	000
Introduc	tion				

- Affrication in Québec French (QF): Canonically, /t, d/ \rightarrow [ts, dz] before /i, j, y, ų/
- Previously noted complications:
 - Independent site for high vowel deletion, devoicing & other lenition processes (e.g., Gendron 1966; Cedergren and Simoneau 1985)
 - /d/-devoicing (partial or total), with sociolinguistic factors (Bento, 1998)
- We add here evidence for **fricative-vowel coarticulation** (FVC), manifesting as partial vowel 'fricativization'

Introduction 0000	Affrication	Methodology	Results & Disc.	Conclusion	References
	00000000	000	00000	00	000
Consequ	ences				

- Affrication is maximally 4-phased (Burst friction, aspiration, FVC, 'pure' vowel), e.g., [tsii]
- Complex/contour segments potentially created from both input segments (e.g., $/t/ \longrightarrow [ts], /i/ \longrightarrow [ii]$)
- Q Theory (e.g., Inkelas and Shih 2016) offers attractive insights into these sequences' representations and realizations

- Q. How does FVC manifest itself phonetically in QF affrication?
- A. Tentatively, early dip in centre of gravity and/or gradual rise in voicing.
- Q. How common is it?
- A. Quite, though seemingly not a target.
- Q. What could Q Theory have to say?
- A. Processes can target and affect subsegments, motivated by phonetic affinities. Overlap of consonantal subsegments into vocalic segments and/or underrepresentation of subsegments may offer an explanation.

Introduction 000	Affrication	Methodology	Results & Disc.	Conclusion	References
	00000000	000	00000	00	000
Outline					

- 2 Affrication
- 3 Methodology
- 4 Results & Disc.

Background: Affrication

- Categorical within words, variable between words (e.g., Dumas 1987)
- Present & non-stigmatized in QF except for Gaspésie & Côte-Nord
- Less common in Acadian French except in PEI (King and Ryan, 1989) and Northwest New Brunswick (Cichocki and Perreault, 2018)
- Acadian variants include palatalized [d₃] and aspirated [t^h]

Introduction	$\underset{0 \bullet 000000}{\text{Affrication}}$	Methodology	Results & Disc.	Conclusion	References
0000		000	00000	00	000
Articula	tion				

• Contact between tongue predorsum and postalveolar/prepalatal region and lowering of tongue tip towards lower teeth (Charbonneau and Jacques, 1972)

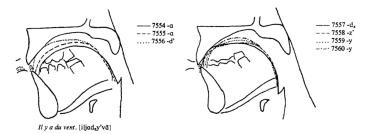


Fig. 1: X-ray tracings of /ady/, $(il \ y) \ a \ du \ (vent)$ (Charbonneau and Jacques 1972: 87)

Introduction	$\begin{array}{c} \text{Affrication} \\ \text{oo}\bullet\text{oo}\circ\text{oo} \end{array}$	Methodology	Results & Disc.	Conclusion	References
0000		000	00000	00	000
Typolog	у				

- Assibilation more generally (/t/ → [s], [t^s], [tf]) most frequently targets coronal stops before high front vocoids (Hall et al., 2006)
- Trigger is always to the right of the target for aerodynamic reasons (Clements, 1999; Kim, 2001)
- Motivated by the degree of closure of high vowels creating the conditions for turbulance (Jaeger, 1978)

Introduction	$\begin{array}{c} \text{Affrication} \\ \text{000} \bullet \text{0000} \end{array}$	Methodology	Results & Disc.	Conclusion	References
0000		000	00000	00	000
Phases, 1					

• Hall et al. (2006) distinguish 'burst friction' (BF) and 'aspiration' (A) as parts of larger 'friction phase' in assibilation, as in Fig. 2

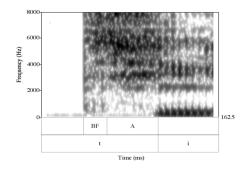


Fig. 2: An example from German (Hall et al. 2006: 64)

Introduction	$\begin{array}{c} \text{Affrication} \\ \text{0000} \bullet \text{000} \end{array}$	Methodology	Results & Disc.	Conclusion	References
0000		000	00000	00	000
Phases,	II				

- Burst friction necessarily precedes and is shorter than aspiration; generated at stop PoA and having relatively lower energy than aspiration, from 3500 to 7000 Hz (Hall et al. 2006: 64)
- Aspiration "generated at the glottis and shows a stronger concentration of energy in the higher frequency region but also formant like peaks in lower frequency regions" and "overlaps with friction generated at the constriction of this vocoid".
- We distinguish aspiration from an additional phase with lower energy and more prominent formant peaks...

Introduction		Methodology	Results & Disc.	Conclusion	References
0000		000	00000	00	000
Compare	e with				

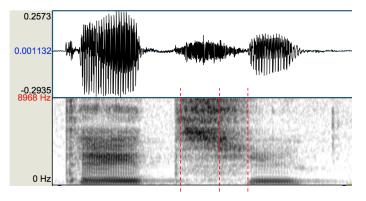


Fig. 3: Phases in /ty/, têtu (speaker 1)

Introduction		Methodology	Results & Disc.	Conclusion	References
0000		000	00000	00	000
Compare	e with				

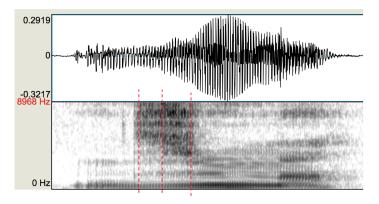


Fig. 4: Phases in /dy/, dûment (speaker 1)

Introduction	$\begin{array}{c} \text{Affrication} \\ \text{0000000} \bullet \end{array}$	Methodology	Results & Disc.	Conclusion	References
0000		000	00000	00	000
Fricativi	zed high	vowels			

• Simultaneous tongue tip and tongue body constriction (Zhou and Wu, 1963), with strident frication and high vowel-like formant structure (Connell, 2007)

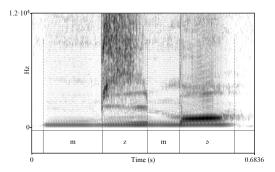


Fig. 5: Fricativized vowel in Wanghao Wu Chinese, [mzmo] (Faytak, 2014)

Methodology

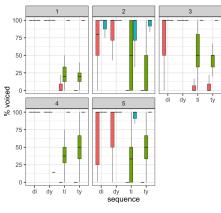
Introduction	Affrication	Methodology	Results & Disc.	Conclusion	References
0000	00000000	●00	00000	00	000
Experim	ent				

- Stimuli:
 - Reading task, real words of French containing /ti, ty, di, dy/ sequences in open initial and closed final syllables
 - 1 word per sequence, per following consonant type: voiceless stop, voiced stop, voiceless fricative, voiced fricative, sonorant
 - Additional 3 words per sequence in final open syllable
 - 49 tokens (some lexical gaps) + 50 distractors
- 4 randomized orders presented per speaker in slideshow, self-directed pace
- $\bullet~5$ native QF speakers, all around age of 25 and female
- Recorded with Samson Meteor microphone in Praat (mono, 44.1 kHz sampling frequency)

Introduction	Affrication	Methodology	Results & Disc.	Conclusion	References
0000	00000000	o●o	00000	00	000
Data pro	ocessing				

- \bullet Controls: intervocalic /s, z/
- /t, d/ + /i, y/ sequences subjectively divided into a spiration, FVC and/or vowel phases based on energy concentration and formants in spectrogram
- 2 repetitions excluded for speaker 2 (microphone error)
- 877 sequences in total (not including controls)

Introduction	Affrication	Methodology	Results & Disc.	Conclusion	References
0000	00000000	oo●	00000	00	000
Measure	ments				

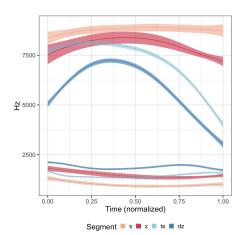

- Voicing automatically extracted for (sub)segments of interest from voice report (pitch range: 75-500 Hz, otherwise standard settings)
- Centre of gravity (COG):
 - 500 Hz high pass filter applied (e.g., Hamann and Sennema (2005))
 - Spectrogram (max frequency 11 kHz, otherwise standard settings) \longrightarrow COG extracted from spectral slices at 5 ms intervals
 - Standard deviation provided dispersion
- Timestamps scaled for word, speaker and reading

Results & Discussion

Introduction	Affrication	Methodology	Results & Disc.	Conclusion	References			
0000	00000000	000	●0000	00	000			
Impressi	Impressionistic notes							

- Full vowel frequently reduced or missing before oral & nasal stops (e.g., *dimanche, typique*)
- Otherwise, several generic types evidenced:
 - /tV/: F+FVC+V (where FVC looks like voiceless vowel)
 - /tV/: F+V with short gap between the two (some speakers seem to prefer this)
 - /dV/: F+FVC+V (where FVC looks like fricativized vowel)
- Where present, F and FVC appear to have similar length, and F+FVC appear to have similar duration as V (influence of following segment aside)

Introduction	Affrication	Methodology	Results & Disc.	Conclusion	References
0000	00000000	000	o●ooo	00	000
Voicing					



- Speakers 1, 3 & 4 barely devoice /dV/ (save for S4 /di/ variation)
- Aspiration voicing in /tV/ sequences near 0%
- FVC voicing in /tV/ sequences intermediate
- Vowel voicing maintained

Fig. 6:

Mean voicing by phase, sequence & participant F =friction (aspiration), FVC = frictive-vowel coarticulation, V =vowel

Introduction Affrication Methodology Results & Disc. Conclusion References 000 Centre of gravity & dispersion

- Voicing effect in both cases (voiced < voiceless)
- Affricates characterized by spike in frequency (voiced) and gradual decline around 33-50% (both)
- Fricatives remain fairly stable, as does dispersion
- Same trends hold in individual results, save for variation in /z/ (declines more sharply for some)

Fig. 7:

SSANOVAs with 95% confidence intervals, fricatives & affricate non-V phases COG = solid lines, dispersion = dashed lines

Introduction	Affrication	Methodology	Results & Disc.	Conclusion	References
0000	00000000	000	000●0	00	000
Discussio	on				

- Low initial COG of affricates indicative of burst friction, with rise towards fricative(-like) target
- Early COG decline doesn't seem to imply rise in dispersion
- Could suggest addition of lower-energy vowel structure is proportionate to lowering of higher-energy associated with friction/aspiration
- Tongue tip lowering and vocalic gestures may thus be fairly well coordinated (see also rise of voicing in this phase)
- 'Fricativized vowel' phase present but not a target, rather a result of looser interpolation
- F2, intensity and skewness need to be looked at in future

Introduction	Affrication	Methodology	Results & Disc.	Conclusion	References
0000	00000000	000	0000●	00	000
Q Theor	У				

- Divides the classic segment [Q] into subsegments [q]
- Example: post-oralized vs. pre-nasalized stops in Panará, $C(m^1m^2p^3)$ vs. $C(m^1p^2p^3)$ (Garvin et al., 2018)
- FVC may be represented as surface emergence of consonantal [q] in vocalic [Q] or vice-versa
- \bullet For instance: $C(t^1t^2t^3)V(i^1i^2i^3) \longrightarrow C(t^1s^2s^3)V(s^1i^2i^3)$
- Underrepresentation is also a tempting avenue, but requires more work on the actual substance of [q]'s

Introduction	Affrication	Methodology	Results & Disc.	Conclusion	References
0000	00000000	000	00000	•0	000
Summar	у				

- QF affrication shows evidence for fricative-vowel mixing between aspiration and vocalic phases, though it may not be a planned property of pronunciation
- Q Theory well-advantaged to capture internal complexity of these sequences
- May also provide interesting insights into underlying structure of these segments (esp. of high vowels)

Introduction	Affrication	Methodology	Results & Disc.	Conclusion	References
0000	00000000	000	00000		000
Acknowl	edgments				

LNG 3070 (Fall 2019) students at UdeM spearheaded the gathering and processing of pilot data. Thanks to Stephanie Shih and Jeffrey Lamontagne for their thoughts on the Q theoretic aspects of this project. Thanks to Gabriel Trottier for his work in the experiment. Any errors or misunderstandings are my own.

Introduction	Affrication	Methodology	Results & Disc.	Conclusion	$\substack{\bullet\bullet\bullet}$
0000	00000000	000	00000	00	
Works C	ited I				

- Bento, M. (1998). Une étude sociophonétique des affriquées désonorisées en franco-québécois. Revue québécoise de linguistique, 26(1):13–26.
- Cedergren, H. J. and Simoneau, L. (1985). La chute des voyelles hautes en français de montréal: 'As-tu entendu la belle syncope?'. Les tendances dynamiques du français parlé à Montréal, 1:57–145.
- Charbonneau, R. and Jacques, B. (1972). [ts] et [dz] en français canadien. Papers in linguistics and phonetics to the memory of Pierre Delattre, pages 77–90.
- Cichocki, W. and Perreault, Y. (2018). L'assibilation des occlusives /t/ et /d/ en français parlé au nouveau-brunswick: nouveau regard sur la question. In *Regards croisés sur les français d'ici*, pages 45–64. Presses de l'Université Laval.
- Clements, G. N. (1999). Affricates as noncontoured stops. In O. Fujimura, B. D. Joseph, B. P., editor, *Item, order in language and speech.*, pages 271–299. Charles University Press, Prague.
- Connell, B. (2007). Mambila fricative vowels and bantu spirantisation. Africana Linguistica, 13(13):7–31.

Introduction	Affrication	Methodology	Results & Disc.	Conclusion	References
0000	00000000	000	00000	00	●●●
Works C	ited II				

- Dumas, D. (1987). Nos façons de parler: les prononciations en français québécois. Presses de l'Université du Québec.
- Faytak, M. (2014). High vowel fricativization and chain shift. UC Berkeley PhonLab Annual Report, 10(10).
- Garvin, K., Lapierre, M., and Inkelas, S. (2018). A q-theoretic approach to distinctive subsegmental timing. Proceedings of the Linguistic Society of America, 3(1):9–1.
- Gendron, J.-D. (1966). Tendances phonétiques du française parlé au Canada, volume 2. C. Klincksieck.
- Hall, T. A., Hamann, S., and Zygis, M. (2006). The phonetic motivation for phonological stop assibilation. *Journal of the International Phonetic* Association, 36(1):59–81.
- Hamann, S. and Sennema, A. (2005). Acoustic differences between german and dutch labiodentals. ZAS Papers in Linguistics, 42:33–41.
- Inkelas, S. and Shih, S. S. (2016). Re-representing phonology: Consequences of q theory. In *Proceedings of NELS*, volume 46.

Introduction	Affrication	Methodology	Results & Disc.	Conclusion	References
0000	00000000	000	00000	00	
Works C	ited III				

- Jaeger, J. J. (1978). Speech aerodynamics and phonological universals. In Annual Meeting of the Berkeley Linguistics Society, volume 4, pages 312–329.
- Kim, H. (2001). A phonetically based account of phonological stop assibilation. *Phonology*, 18(1):81–108.
- King, R. and Ryan, R. (1989). La phonologie des parlers acadiens de l'île-du-prince-édouard. Le français canadien parlé hors Québec (aperçu sociolinguistique), pages 245–259.
- Zhou, D. and Wu, Z. (1963). Putonghua fayin tupu [Articulatory diagrams of Standard Chinese]. Shangwu yinchuguan.