Towards a unified taxonomy of dual interactions **Michael Dow, Indiana University** Dept. of Linguistics 50th Anniversary Celebration, October 12, 2013

 $/mg/ \rightarrow [m]$

Abstract: not all interactions are equal

- In dual interactions, more than one effect is observed between two rules/ processes
- No current theory on which dual interactions may be possible or must be impossible; framework-specific differences
- I propose three terminological parameters to create a unified taxonomy:
- Bidirectional vs. selfish (whether each process has one effect on the other • or whether one single process has two simultaneous effects on the other),
- Inter- vs. intra-type (whether a transparent or opaque process may interact the other kind or not)
- α vs. β -transformation (whether a feeding (or counterfeeding) type may interact with a bleeding (or counterbleeding) type or not).
- Rule-based serialism excels at deriving bidirectional interactions while OT-CC better models selfish interactions.
- Selfish α -transformations and bidirectional intra-type transformations are predicted not to exist.

Background: single-place interactions

Rule-based serialism and OT-CC enforce ordered application among rules or processes. Intermediate forms play a role in derivations.

(1) Four primary interactions

Given two rules (A and B), such that A precedes B,

- Feeding: A creates additional inputs to B. a.
- Bleeding: A eliminates potential inputs to B. b.
- Counterfeeding: B creates additional inputs to A. С.
- Counterbleeding: B eliminates potential inputs to A. d.

The challenge: multiple rule interactions

- A's having a relationship to B says nothing about B's relationship to A
- One rule may have more than one interaction with the other at the same time: DUAL INTERACTIONS (must involve only two rules/processes).

(2) Documented types of dual interactions:

- a. Fed counterfeeding (e.g. Kavitskaya & Staroverov 2010): A feeds B, B counterfeeds A.
- Fed counterbleeding (Baković 2011): A feeds B, B counterbleeds A. b.
- Bled counterbleeding (Koutsoudas et al. 1974): A bleeds B, B counterbleeds A. С.
- Hybrid opacity (Dow 2013): B counterbleeds and counterfeeds A. d.
- Hybrid transparency: A feeds and bleeds B. e.
- Standard OT-CC fails to derive (2a) and likely (2b, c). Both rule-based serialism and OT-CC can derive (2d, e) without problem.
- New types can be generated in OT-CC which rule ordering can't derive.

Generating new types of dual interactions

(3) Bleeding-and-counterfeeding

/mgV/ → [ŋgV]

	·9·· [-]9·]	, 3 ,	[]		, g	" L	1
		*VOC	*MAXC	AGREE	MAXC	ID[place]	ID[place]
			-THEN-		1		←
/mgV/			ID[place]		 		MAXC
a.	<mgv></mgv>		 	*!	 		
	Ø		 	*!	 		
b. 😁	<mgv, ŋgv=""></mgv,>		r 1 1		 	*	
	ID[place]		1		1		
/mg/					•		
с.	<mg></mg>	*!		*			
	Ø			-	1 1		
d.	<mg, ŋg=""></mg,>	*!	- 1 1		1 1 1	*	
	ID[place]	•	 		1 1 1		
e.	<mg, ŋ="" ŋg,=""></mg,>		1 1 1		*	*!	
	ID[place], MAXC		 		1 1 1	•	
f. 🖙	<mg, m=""></mg,>		1 1 1		*		*
	MAXC		1 1 1		1 1 1		
/mgt/							
g.	<mgt></mgt>	*!		*	1		
	Ø	•	 		1 1 1		
h.	<mgt, ŋgt=""></mgt,>	*!			 	*	
	ID[place]				1 1 1		
i.	<mgt, ŋgt,="" ŋt=""></mgt,>			*	*	*!	
	ID[place], MAXC				, , ,	•	
j.	<mgt, nt="" ŋgt,="" ŋt,=""></mgt,>		*!		*	**	
	ID[place], MAXC, ID[place]						
k. 💝	<mgt, mt=""></mgt,>			*	*		*
	MAXC						
1.	<mgt, mt,="" nt=""></mgt,>		*!		*	*	*
	MAXC, ID[place]				1 1		

Deletion simultaneously removes and provides potential inputs to assimilation (bleeding and counterfeeding).

(4) Counterbleeding-and-feeding

$/\mathrm{mg}/ \rightarrow [\mathrm{\eta}]$ $/mgV/ \rightarrow [\eta gV]$

/mgV/		*VOC	AGREE	MAXC	PREC(ID[place], MAXC)	ID[place]
a.	<mgv> Ø</mgv>		*!			
b. 🖙	<mgv, ŋgv=""> ID[place]</mgv,>					*
/mg/						
c.	<mg> Ø</mg>	*!	*			
d.	<mg, ŋg=""> ID[place]</mg,>	*!				*
e. ≌-	<mg, ŋ="" ŋg,=""> ID[place], MAXC</mg,>			*		*
f.	<mg, m=""> MaxC</mg,>			*	*!	
/mgt/						
g.	<mgt> Ø</mgt>	*!	*			
h.	<mgt, ŋgt=""> ID[place]</mgt,>	*!				*
i.	<mgt, ŋgt,="" ŋt=""> ID[place], MAXC</mgt,>		*!	*		*
j. 🖫	<mgt, nt="" ŋgt,="" ŋt,=""> ID[place], MAXC, ID[place]</mgt,>			*	*	**
k.	<mgt, mt=""> MaxC</mgt,>		*!	*	*	
1.	<mgt, mt,="" nt=""> MAXC, ID[place]</mgt,>			*	**!	*

Deletion removes the motivation for the application of assimilation and provides additional input for assimilation to re-apply—which it does.

$/mgt/ \rightarrow [mt]$

$/mgt/ \rightarrow [nt]$

The solution: classifying parameters

Bidirectional vs. selfish

- Bidirectional: Each process has one effect on the other.
- Selfish: One process has two effects on the other.

Inter- vs. intra-type

- Inter-type: An opaque process interacts with a transparent process, or viceversa.
- Intra-type: An opaque process interacts with an opaque process, or transparent with transparent.

<u>α- vs. β-transformation</u>

- α-transformation: A feeding or counterfeeding process interacts with a feeding or counterfeeding process, or (counter)bleeding with (counter)bleeding.
- β-transformation: A feeding or counterfeeding process interacts with a bleeding or counterbleeding process, or vice-versa.

(5)			Rule-	
(5)	Туре	Classification	based?	OT-CC?
a.	Fed counterfeeding	Bidirectional inter-type α-	Yes	No
		transformation		
b.	Fed counterbleeding	Bidirectional inter-type β-	Yes	No?
		transformation		
c.	Bled counterbleeding	Bidirectional inter-type α-	Yes	No?
		transformation		
d.	Bleeding-and-counterfeeding	Selfish inter-type β-transformation	No	Yes*
e.	Counterbleeding-and-feeding	Selfish inter-type β-transformation	No	Yes
		-		
f.	Counterbleeding-and-	Selfish intra-type β-transformation	Yes	Yes
	counterfeeding			
g.	Bleeding-and-feeding	Selfish intra-type β-transformation	Yes	Yes
_		• = •		

Important gaps suggesting impossible types:

Selfish α-transformations

- Selfish inter-type α-transformation, e.g. P feeds and counterfeeds Q
- Selfish intra-type α -transformation, e.g. P feeds and feeds Q

Bidirectional intra-type transformations

- Bidirectional intra-type α-transformation, e.g. P feeds Q, Q feeds P
- Bidirectional intra-type β -transformation, e.g. P feeds Q, Q bleeds P

Further directions and conclusions

- No difference predicted between transparent and opaque permutations of intra-type transformations, or for permutations of inter-type transformations (e.g. if bleeding-and-counterfeeding is allowed, feeding-and-counterbleeding would be as well).
- A revision of these parameters may be required if we do find such differences.
- More work needs to be done on different types of rules/processes (e.g. suprasegmental, harmony, etc.) and different input types.
- This system should elucidate hidden trends concerning rule interaction in general.
- Disparity between rule ordering and OT-CC: the two embody serialism in crucially different ways.
- Depending on what must or must not exist, this system can provide arguments for or against one of these frameworks.