Let me see that truncussy: Elucidating patterns in a novel blending meme MOT 2018 (McMaster University)

Michael Dow Université de Montréal

March 24, 2018

Introduction

-(u)ssy blends & the "one thicc bih" meme

- Appearance & explosion of "one thicc bih" meme (text and Ditty videos, e.g. Fig. 1) in May 2017
- Format: "x is one thicc bih, let me see that y"; x = character or famous personality; y = blend of x (or related word) and pussy

Fig. 1: Babadook > babussy Source: dcparkers, 06/2017

What's in a meme?

Introduction

- Documented -(u)ssy blends date back to early 2010s in gay slang, re-popularized by an April 2017 Tumblr post
- thice & bih AAVE slang (together \approx "sexy individual"), each documented back as far back as early 2000s
- Memetic nature of "ussification" may resolve empirical problems in study of blends:
 - Difficulty of automatic collection/recognition (Fradin 2015) \longrightarrow ease of collecting large corpus of meme
 - High degree of variation within and across languages (different "species") \longrightarrow controlled setting (W₂ remains constant) allows for isolation of factors in W₁
 - Differing degrees of felicity \longrightarrow several metrics (e.g., meme-user judgments, retweets & likes) can make sense of variation

Life cycle of a meme

- Widespread media recognition (e.g. New York Magazine, Buzzfeed) \longrightarrow Ditty app #1 on iTunes store (May 2017)
- Decline around July 2017 (Fig. 2)

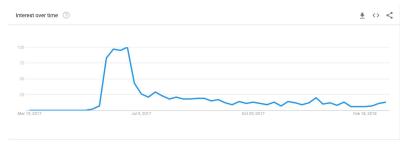


Fig. 2: "one thicc bih" in Google trends

Main questions

- -(u)ssy blends still in use, e.g. @UssyBot & spikes in grussy ('Grinch pussy') on Twitter (12/2017 & 03/2018 for Grinch remake trailer)
- Hard to quantify outside of meme (no substring searches)
- Assuming -ussy forms remain a part of Internet language...
 - What, if any, implicit factors (phonological or other) regulate their formation?
 - ② Are they blends? If not, what else?
 - We have do these forms fit in with, and what can they reveal about blending as a general morphological process in English? In language in general?

Outline

Introduction 00000

- Introduction
- 2 Blending
- Methodology & results
- 4 Discussion & future work

Blending

Properties of blends

- Definition: "intentional coinage of a new word by fusing parts of at least two source words of which either one is shortened in the fusion and/or where there is some form of phonemic or graphemic overlap of the source words" (Gries 2004)
- Three salient properties (Fradin 2015)
 - No preservation of lexical integrity: stems are rarely maintained intact & their alteration is variable
 - No fixed pattern of compositionality: head member is unpredictable
 - "Type hapaxes": blends cannot form series (e.g. élevage 'breeding' + vache 'cow' \longrightarrow élevache 'cow breeding' but *élechien 'dog breeding')

Will it blend?

- -(u)ssy forms meet most but not all criteria: series-like, -(u)ssy almost suffixal
- Many forms are context-dependent for meaning (esp. first line of meme, picture, discussion thread)
- Forced combination regardless of overlap: $\langle chick \rangle en +$ $p < ussy > \longrightarrow chickussy \text{ (more common) vs. } < Bloss > om +$ $pu \langle ssy \rangle \longrightarrow blossu$
- Potential avoidance of complete integration: platypus > platussy, ?platypussy

Chunnel vs. brunch

- Gries' (2004) Similarity Index (SI), proportionate amount of material contributed by each word:

 - \bullet < br> eakfast + l< unch> = 0.3
- Average SI of intentional & error-driven blends ≈ 0.5 , vs. random word pairings ≈ 0.3

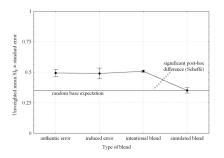


Fig. 3: SI by blend type

Overlap

- What selects constituent words in a blend?
- Semantic motivation (*brunch*) vs. phonological selection *glitterati*, cf. Fradin's (2015) criterion of overlap

	A. Trunc. $=$ both	B. Trunc. $= 1$		C. Trunc. = 2	D. Trunc. $= 0$
+ov	daxpór	knáuros		Müllionärin	Paradiesel
+LIN	daxáf × laxpór	knástos × áuros		Müll × Millionärin	$Paradies \times Diesel$
+ov	dialügisch	carnibbleous		_	hypocritiquement
-LIN	dialogisch × Lüge	carniverous	×		hypocritement ×
		nibble			critique
-ov	brunch	klafúda		smothercate	sálkal
+LIN	breakfast × lunch	klára × fúda		$smother \times suffocate$	sál × kál
-ov	agitprop	_		_	rajolivissant
-LIN	agitation \times propag.				ravissant × joli

Fig. 4: Typology of blends (Fradin 2015)

Extragrammaticality \neq irregularity

- Debate over blending as morphological (e.g., Bat-El 1996, Plag 2003) vs. extragrammatical (e.g., Bauer 1988, Dressler 2000) process
- Extragrammaticality does not exclude influence of regular/universal linguistic forces, especially phonological for blends (Fradin, Montermini & Plénat 2009)
- Other peripheral (informal) processes evidence knowledge of grammar-external structures or forces, e.g., expletive infixation (McCarthy 1982), *shitgibbons* (Tessier & Becker 2018)

- The shorter source word of a blend more likely to contribute more information for intelligibility (Kaunisto 2000)
- Gries' (2004) results confirm this + a (competing?) tendency for W₂ to contribute more:

which word	which word contributes more to the blend?			
is larger?	=	source word ₁	source word ₂	totals
=	47 (++)	22 ()	53	122
source word ₁	58	45 ()	211 (+++)	314
source word ₂	125	316 (+++)	111 ()	552
column totals	230	383	375	988

Fig. 5: Contribution by length, phonemes

Methodology & results

Methodology

- Mini-corpus of 94 unique -(u)ssy forms from Youtube meme compilations, including:
 - Full referent
 - Deduced W₁ "base"
 - Novelty of blend (if $W_1 \neq referent$)
 - Base contribution (no. graphemes & syllables)
 - W₂ contribution
 - Stress pattern of base
- Some educated guesses on bases (e.g. *Vinny* Vinesauce > vussy)
- Generous count of shared graphemes & phonemes between words, e.g. graphemes in (Bubble) Bass > bassy: $W_1 = 4$, $W_2 = 3$

Results (phonemes)

	Condition	$Ph(W_1)$	$Ph(W_2)$	Count
	$W_1 < W_2$	1.5	2.8	13
Non-novel	$W_1 = W_2$	1.6	2.9	24
	$W_1 > W_2$	2.3	2.7	41
	$W_1 < W_2$	2.3	3	3
Novel	$W_1 = W_2$	2	3	1
	$W_1 > W_2$	5.2	2.9	12

Table 1: Mean phoneme (Ph) contribution by novelty and relative length

Results (graphemes)

Quite similar results from graphemes.

	Condition	$Gr(W_1)$	$Gr(W_2)$	Count
	$W_1 < W_2$	1.9	3.8	15
Non-novel	$W_1 = W_2$	1.7	3.8	24
	$W_1 > W_2$	2.6	3.8	39
	$W_1 < W_2$	4	4	2
Novel	$W_1 = W_2$	2	4	2
	$W_1 > W_2$	5.1	3.9	12

Table 2: Mean grapheme (Gr) contribution by novelty and relative length

To V or not to V?

	Shape	W_1 length	Count
	Onset-only	4.7	46
Non-novel	1σ	5	29
	2σ	6	3
	Onset-only	3.5	2
Novel	1σ	6.3	9
	2σ	7.3	4

Table 3: W₁ blend shape by average W₁ lexeme length (phonemes) Discussion & future work

Trends & strong factors

- Novelty and relative length $(W_1 > W_2)$ leads to greater inclusion of W_1 material, though not necessarily less of W_2 .
- Fricatives & $\langle r \rangle$ may be special:
 - Fricatives in the base seem to encourage loss of $\langle u \rangle$ in W₂ (e.g., Trisha > trissy) (8/14), though not categorically (e.g., Yoshi > yussy)
 - <r> (in <rC>) may also lead to greater chance of <u>-drop (e.g., Barney > barsy) (3/14), again not categorical (starfish > stussy)

Trends & strong factors, 2

- Lower sonority coda + higher sonority onset leads to greater W_1 contribution (e.g., toadstool > toadstussy) without exception, though half are novel (3/6)
- Stress is inconclusive, but initial unstressed syllable may lead to greater W_1 contribution (e.g. explorer > explorussy)
- V-initial words also inconclusive, need to be further tested

Future work

- Sources:
 - Expanded corpus study: Twitter "scraping" & processing
 - Judgment task
- Variation can be gauged for repeated subjects in corpus study (number of attestations and/or likes & retweets)
- Judgment task: what factors take priority in cases of conflict?
- Being less dependent on context, do novel forms behave as true blends (e.g., average SI)?

Summary

- In novel blends (most recognisable), W₁ contributes more than W_2 , against de Gries (2004)
- W₁ factors: length, syllable contact, novelty
- W_2 factors: fricative and/or $\langle r \rangle$ in W_1
- Additional test factors:
 - V- vs. C-initial
 - Stress pattern
 - Identical blend avoidance (e.g. Pewdiepie > pewssy, *pussy)
 - [σ] in W₁

Thank you!

