Issues in unifying nasal vowel markedness 12th Old World Conference in Phonology

Michael Dow Université de Montréal

January 29, 2015

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Introduction \bullet 0000	Vowel quality 00000000	$\begin{array}{c} \text{Quantification} \\ \text{00000000} \end{array}$	Analysis 000	Conclusion 000
Outline				

- 2 Issues in vowel quality
- Issues in nasality quantification
- 4 Sketching an analysis
- **6** Conclusion

Introduction	Vowel quality	Quantification	Analysis	Conclusion
o●ooo	00000000	00000000	000	000
Introduction	l			

• Phonetic motivation of nasal vowel phenomena in phonology

Introduction	Vowel quality	\mathbf{Q} uantification	Analysis	Conclusion
o●ooo	00000000	00000000	000	000
Introduction	ı			

- Phonetic motivation of nasal vowel phenomena in phonology
- Lowering in French $/fi^n/\to [f\tilde\epsilon]$ 'fine (masc.)' (vs. [fin] 'fine (fem.)')

Introduction $0 \bullet 000$	Vowel quality	Quantification	Analysis	Conclusion
	00000000	00000000	000	000
Introduction	1			

- Phonetic motivation of nasal vowel phenomena in phonology
- Lowering in French $/{\rm fi}^n/\to [f\tilde\epsilon]$ 'fine (masc.)' (vs. [fin] 'fine (fem.)')
 - "Relative markedness of high to mid vowels must drive lowering, supported by greater difficulty in nasal coupling on high vowels"

$\begin{array}{c} \text{Introduction} \\ \circ \bullet \circ \circ \circ \end{array}$	Vowel quality	Quantification	Analysis	Conclusion
	00000000	00000000	000	000
Introduction	1			

- Phonetic motivation of nasal vowel phenomena in phonology
- Lowering in French $/fi^n/\to [f\tilde\epsilon]$ 'fine (masc.)' (vs. [fin] 'fine (fem.)')
 - "Relative markedness of high to mid vowels must drive lowering, supported by greater difficulty in nasal coupling on high vowels"
 - OR: "High nasal vowels are marked because they are harder to nasalize."

$\begin{array}{c} \text{Introduction} \\ \circ \bullet \circ \circ \circ \end{array}$	Vowel quality	Quantification	Analysis	Conclusion
	00000000	00000000	000	000
Introduction	1			

- Phonetic motivation of nasal vowel phenomena in phonology
- Lowering in French $/fi^n/\to [f\tilde\epsilon]$ 'fine (masc.)' (vs. [fin] 'fine (fem.)')
 - "Relative markedness of high to mid vowels must drive lowering, supported by greater difficulty in nasal coupling on high vowels"
 - OR: "High nasal vowels are marked because they are harder to nasalize."
 - [NB: discredited explanation]

$\begin{array}{c} \text{Introduction} \\ \text{oo}\bullet\text{oo} \end{array}$	Vowel quality	Quantification	Analysis	Conclusion
	00000000	00000000	000	000
Introduction	l			

• Phonetic grounding not problematic *per se*, but runs the risk of:

$\begin{array}{c} \text{Introduction} \\ \text{oo}\bullet\text{oo} \end{array}$	Vowel quality	Quantification	Analysis	Conclusion
	00000000	00000000	000	000
Introduction	1			

- Phonetic grounding not problematic *per se*, but runs the risk of:
 - Losing motivation upon further inspection/more sophisticated methodology

$\begin{array}{c} \text{Introduction} \\ \text{oo} \bullet \text{oo} \end{array}$	Vowel quality	Quantification	Analysis	Conclusion
	00000000	00000000	000	000
Introduction	1			

- Phonetic grounding not problematic *per se*, but runs the risk of:
 - Losing motivation upon further inspection/more sophisticated methodology
 - Reduplicating information in the grammar—or at worst, lacking unified principle

$\begin{array}{c} \text{Introduction} \\ \text{oo}\bullet\text{oo} \end{array}$	Vowel quality	Quantification	Analysis	Conclusion
	00000000	00000000	000	000
Introduction	1			

- Phonetic grounding not problematic *per se*, but runs the risk of:
 - Losing motivation upon further inspection/more sophisticated methodology
 - Reduplicating information in the grammar—or at worst, lacking unified principle
- Establishment of markedness hierarchies requires much more (and more phonological) evidence, but exceedingly difficult when data seem convoluted

$\begin{array}{c} \text{Introduction} \\ \text{oo}\bullet\text{oo} \end{array}$	Vowel quality	Quantification	Analysis	Conclusion
	00000000	00000000	000	000
Introduction	1			

- Phonetic grounding not problematic *per se*, but runs the risk of:
 - Losing motivation upon further inspection/more sophisticated methodology
 - Reduplicating information in the grammar—or at worst, lacking unified principle
- Establishment of markedness hierarchies requires much more (and more phonological) evidence, but exceedingly difficult when data seem convoluted
- High level of idiosyncrasy in nasal vowel behavior (even just on surface)

Introduction 00000	Vowel quality	Quantification	Analysis	Conclusion
	00000000	00000000	000	000
Recent issue	es (phonetics)			

• Recent instrumental/experimental findings cast even further doubt:

$\begin{array}{c} \text{Introduction} \\ \text{00000} \end{array}$	Vowel quality 00000000	$\mathbf{Quantification}$	Analysis 000	$\operatorname{Conclusion}_{000}$
Recent iss	sues (phonetics	s)		

- Recent instrumental/experimental findings cast even further doubt:
 - **Imaging:** Significant mismatch among transcribed vowel, acoustic output, and (re)configuration of oral articulators (esp. tongue).

 \rightarrow How do we define the output vowel's quality? Input?

Introduction 00000	Vowel quality	Quantification	Analysis	Conclusion
	00000000	00000000	000	000
Recent issu	es (phonetics))		

- Recent instrumental/experimental findings cast even further doubt:
 - **Imaging:** Significant mismatch among transcribed vowel, acoustic output, and (re)configuration of oral articulators (esp. tongue).

 \rightarrow How do we define the output vowel's quality? Input?

• Nasal quantification: Global scores of nasality may require different thresholds for vowels of different heights, and high percentages of nasalization may not always be indicative of a *phonological* process.

 \rightarrow How do we define the surface vowel's nasality?

Introduction 00000	Vowel quality	Quantification	Analysis	Conclusion
	00000000	00000000	000	000
Recent issu	es (phonetics))		

- Recent instrumental/experimental findings cast even further doubt:
 - **Imaging:** Significant mismatch among transcribed vowel, acoustic output, and (re)configuration of oral articulators (esp. tongue).

 \rightarrow How do we define the output vowel's quality? Input?

• **Nasal quantification:** Global scores of nasality may require different thresholds for vowels of different heights, and high percentages of nasalization may not always be indicative of a *phonological* process.

 \rightarrow How do we define the surface vowel's nasality?

• Attempts to establish a unified phonological theory of nasal vowels must first address these phonetic discrepancies (esp. within a modular approach)

$\begin{array}{c} \text{Introduction} \\ \text{0000} \bullet \end{array}$	Vowel quality 00000000	$\mathbf{Quantification}$	Analysis 000	Conclusion 000
Objectives	& outline			

• Problematize nasal vowels in phonology (in light of some phonetics-based issues):

$\begin{array}{c} \text{Introduction} \\ \text{0000} \bullet \end{array}$	Vowel quality 00000000	$\operatorname{Quantification}_{\operatorname{OOOOOOO}}$	Analysis 000	Conclusion 000
Objectives	& outline			

- Problematize nasal vowels in phonology (in light of some phonetics-based issues):
 - Recovering underlying representations from conflicting surface evidence

Introduction 0000	Vowel quality 00000000	$\mathbf{Quantification}$	Analysis 000	Conclusion 000
Objectives	& outline			

- Problematize nasal vowels in phonology (in light of some phonetics-based issues):
 - Recovering underlying representations from conflicting surface evidence
 - ② Distinguishing oral from nasal vowels when nasal coupling is incomplete

$\begin{array}{c} \text{Introduction} \\ \text{0000} \bullet \end{array}$	Vowel quality 00000000	$\begin{array}{c} \text{Quantification} \\ \text{00000000} \end{array}$	Analysis 000	Conclusion 000
Objectives	& outline			

- Problematize nasal vowels in phonology (in light of some phonetics-based issues):
 - Recovering underlying representations from conflicting surface evidence
 - Obstinguishing oral from nasal vowels when nasal coupling is incomplete
- Sketch a preliminary solution as an example of a possible response & evaluate predictions made by its implementation in a stringent framework

Introduction	Vowel quality	Quantification	Analysis	Conclusion
00000	•0000000	00000000	000	000
Outline				

1 Introduction

- 2 Issues in vowel quality
 - 3 Issues in nasality quantification
- 4 Sketching an analysis
- **5** Conclusion

• Immense body of literature on acoustic effects of nasality: cf. Shosted et al. 2011 for summary, Baken & Orlikof 2000 for exhaustive list

- Immense body of literature on acoustic effects of nasality: cf. Shosted et al. 2011 for summary, Baken & Orlikof 2000 for exhaustive list
- Extra resonator introduces additional nasal poles and zeroes which interact with oral vowel structure

Introduction
occoccVowel quality
coccoccQuantification
coccoccAnalysis
coccConclusion
coccAcoustic effects of nasalization

- Immense body of literature on acoustic effects of nasality: cf. Shosted et al. 2011 for summary, Baken & Orlikof 2000 for exhaustive list
- Extra resonator introduces additional nasal poles and zeroes which interact with oral vowel structure
- Centralization effect: low vowel F1 lowered (raising perceived), high vowel F1 raised (lowering perceived).

Introduction
occosionVowel quality
coordQuantification
coordAnalysis
coordConclusion
coordAcoustic effects of nasalization

- Immense body of literature on acoustic effects of nasality: cf. Shosted et al. 2011 for summary, Baken & Orlikof 2000 for exhaustive list
- Extra resonator introduces additional nasal poles and zeroes which interact with oral vowel structure
- Centralization effect: low vowel F1 lowered (raising perceived), high vowel F1 raised (lowering perceived).
- Unclear global F2 effects, but F2 lowering may increase perception of nasality (Delvaux 2009)

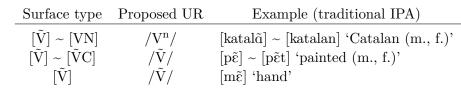
Introduction
occosionVowel quality
coordQuantification
coordAnalysis
coordConclusion
coordAcoustic effects of nasalization

- Immense body of literature on acoustic effects of nasality: cf. Shosted et al. 2011 for summary, Baken & Orlikof 2000 for exhaustive list
- Extra resonator introduces additional nasal poles and zeroes which interact with oral vowel structure
- Centralization effect: low vowel F1 lowered (raising perceived), high vowel F1 raised (lowering perceived).
- Unclear global F2 effects, but F2 lowering may increase perception of nasality (Delvaux 2009)
- Oral articulators can be (and are) reconfigured to shift the acoustic output

	Vowel quality	Quantification	Analysis	Conclusion
00000	0000000	0000000	000	000

3–way mismatch among: articulatory configuration, acoustic output, and traditional transcription

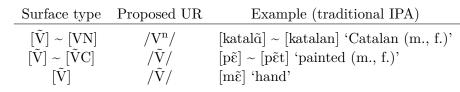
	Vowel quality	Quantification	Analysis	Conclusion
00000	0000000	0000000	000	000


3–way mismatch among: articulatory configuration, acoustic output, and traditional transcription

(1) Transcription of French nasal vowels (minor diacritics removed)

		Acoustic	Articulatory
Example	Traditional	$(Carignan \ 2014)$	$(Delvaux \ 2012)$
paon 'peacock'	[ã]	[õ]	[ã]
pain 'bread'	$[\tilde{\epsilon}]$	$[\tilde{\mathbf{e}}]$	$[ilde{ extbf{a}}]$
pont 'bridge'	[õ]	$[\tilde{o}]$	[õ]
brun 'brown'	$[\tilde{\mathbf{e}}]$		$[ilde{\mathbf{E}}]$

Introduction
coccoVowel quality
coccoQuantification
coccoAnalysis
cocConclusion
coccFleshing out French phonology...


(2) Nasal vowel surface patterns & UR types in French

• NB: further evidence for such input types found in "disjointed" alternations; recall [fɛ̃] ~ [fin] 'fine (m., f.)'.

Introduction
coccoVowel quality
coccoQuantification
coccoAnalysis
cocConclusion
cocFleshing out French phonology...

(2) Nasal vowel surface patterns & UR types in French

- NB: further evidence for such input types found in "disjointed" alternations; recall [fɛ̃] ~ [fin] 'fine (m., f.)'.
- No (major) quality difference in quality between input types for identical surface vowels; only association of [+nasal] (e.g., $/\epsilon^n$, $\tilde{\epsilon}/$)

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Introduction	Vowel quality	Quantification	Analysis	Conclusion
00000	00000000	00000000	000	000
Reanalysis?				

(3) Scale and consequences of reanalysis (example: *pain*-type)

Type	$\mathrm{UR}(\mathrm{s})$	Phono. output
a.	$/\epsilon^{n}, \tilde{\epsilon}/$	[ẽ]
b.	$/\epsilon^{n}, \tilde{\epsilon}/$	$[\tilde{\mathbf{e}}]$
c.	$/\epsilon^{\rm n}, \tilde{ m e}/$	$[ilde{f g}]$
d.	/e ⁿ (?), ẽ /	$[\tilde{\mathbf{e}}]$

- Traditional, "good faith" analysis (a.): alternations provide evidence for more abstract output. "Analogy" links non-alternating identical surface forms and articulatory & acoustic shifts are purely phonetic.
- Middle-of-the-road (b.): no reanalysis of input types, but lowering and centralization occur within phonology.

(4 間) (4 回) (4 回)

Introduction	Vowel quality	Quantification	Analysis	Conclusion
00000	ooooooooo	00000000	000	000
Reanalysis?	(2)			

(4) Scale and consequences of reanalysis (example: *pain*-type)

Type	$\mathrm{UR}(\mathrm{s})$	Phono. output
a.	$/\epsilon^{n}, \tilde{\epsilon}/$	$[\tilde{\epsilon}]$
b.	$/\epsilon^{n}, \tilde{\epsilon}/$	$[ilde{ extbf{e}}]$
с.	$/\epsilon^{ m n}, { m \widetilde{e}}/$	$[\tilde{\mathbf{s}}]$
d.	$/ \mathrm{e}^\mathrm{n}(?), \mathrm{ ilde{e}}$ /	$[\tilde{\mathbf{g}}]$

- Partial reanalysis (c.): same output (necessarily reflective of phonetic shift) belongs to input vowels of different qualities, in addition to feature association; lowering occurs in /εⁿ/ within phonology.
- Total reanalysis (d.): all surface forms come from vowel of same quality (association unclear); either raising occurs in feminine forms ([ɛn]) or funky allomorphy/suppletion comes into play.

Vowel quality	Quantification	Analysis	Conclusion
00000000			

• But *which* shifted vowel (between acoustic & articulatory)? Trends between form and function:

Vowel quality	Quantification	Analysis	Conclusion
00000000			

- But *which* shifted vowel (between acoustic & articulatory)? Trends between form and function:
 - Contrastive nasality: increased acoustic salience in vowel space differences heightened between nasal and oral vowels (e.g. Hindi, French; Shosted et al. 2011, Carignan 2014) → acoustic and/or articulatory identity?

Vowel quality	Quantification	Analysis	Conclusion
00000000			

- But *which* shifted vowel (between acoustic & articulatory)? Trends between form and function:
 - Contrastive nasality: increased acoustic salience in vowel space differences heightened between nasal and oral vowels (e.g. Hindi, French; Shosted et al. 2011, Carignan 2014) → acoustic and/or articulatory identity?
 - Allophonic: greater acoustic identity between output and oral congener — canceling out acoustic effects of nasalization (American English; Carignan et al. 2011) → acoustic identity?

Vowel quality	Quantification	Analysis	Conclusion
00000000			

- But *which* shifted vowel (between acoustic & articulatory)? Trends between form and function:
 - Contrastive nasality: increased acoustic salience in vowel space differences heightened between nasal and oral vowels (e.g. Hindi, French; Shosted et al. 2011, Carignan 2014) → acoustic and/or articulatory identity?
 - Allophonic: greater acoustic identity between output and oral congener — canceling out acoustic effects of nasalization (American English; Carignan et al. 2011) → acoustic identity?
- Targeting of an articulatory configuration (over its acoustic result)?

Introduction	Vowel quality	Quantification	Analysis	Conclusion
00000	oooooooo	00000000	000	000
So what?				

• Room for debate, but (a.) still seems preferable, despite divergent/abstract phonological output:

Introduction	Vowel quality	Quantification	Analysis	Conclusion
00000	oooooooo	00000000	000	000
So what?				

- Room for debate, but (a.) still seems preferable, despite divergent/abstract phonological output:
 - Alternation such as [fē] ~ [fin] requires some (potentially dubious) extra legwork, e.g., intermediate representations, 3-to-1 correspondence, and/or "superlowering."

Introduction	Vowel quality	Quantification	Analysis	Conclusion
00000	ooooooo●	00000000	000	000
So what?				

- Room for debate, but (a.) still seems preferable, despite divergent/abstract phonological output:
 - Alternation such as [fē] ~ [fin] requires some (potentially dubious) extra legwork, e.g., intermediate representations, 3–to–1 correspondence, and/or "superlowering."
 - The listener must be able to unpack minor phonetic shifts into internalized abstractions everything falls apart otherwise.

Introduction	Vowel quality	Quantification	Analysis	Conclusion
00000	oooooooo	00000000	000	000
So what?				

- Room for debate, but (a.) still seems preferable, despite divergent/abstract phonological output:
 - Alternation such as [fē] ~ [fin] requires some (potentially dubious) extra legwork, e.g., intermediate representations, 3-to-1 correspondence, and/or "superlowering."
 - The listener must be able to unpack minor phonetic shifts into internalized abstractions everything falls apart otherwise.
- In the absence of alternations or in the case of underdescribed languages, recovering phonemes from finer and finer phonetic description will require specific conventions.

Introduction	Vowel quality	Quantification	Analysis	Conclusion
00000	0000000	●0000000	000	000
Outline				

1 Introduction

- 2 Issues in vowel quality
- (3) Issues in nasality quantification
- 4 Sketching an analysis

5 Conclusion

$\begin{array}{c} \text{Introduction} \\ \text{00000} \end{array}$	Vowel quality	Quantification	Analysis	Conclusion
	00000000	o●oooooo	000	000
Methods				

• Methods available for modeling nasal intensity and/or duration:

$\begin{array}{c} \text{Introduction} \\ \text{00000} \end{array}$	Vowel quality	Quantification	Analysis	Conclusion
	00000000	o•oooooo	000	000
Methods				

- Methods available for modeling nasal intensity and/or duration:
 - Motion detection: timing of nasalization gestures (e.g., velic lowering)

$\begin{array}{c} \text{Introduction} \\ \text{00000} \end{array}$	Vowel quality 00000000	$\begin{array}{c} \text{Quantification} \\ \text{o} \bullet \text{o} 000000 \end{array}$	Analysis 000	Conclusion 000
Methods				

- Methods available for modeling nasal intensity and/or duration:
 - Motion detection: timing of nasalization gestures (e.g., velic lowering)
 - **Imaging:** velopharyngeal port opening size at any measured point

$\begin{array}{c} \text{Introduction} \\ \text{00000} \end{array}$	Vowel quality	Quantification	Analysis	Conclusion
	00000000	o●oooooo	000	000
Methods				

- Methods available for modeling nasal intensity and/or duration:
 - Motion detection: timing of nasalization gestures (e.g., velic lowering)
 - **Imaging:** velopharyngeal port opening size at any measured point
 - Acoustic: formant tracing (appearance of nasal poles/zeroes) & relationship between oral and nasal formants (e.g. Chen 1997)

$\begin{array}{c} \text{Introduction} \\ \text{00000} \end{array}$	Vowel quality 00000000	$\substack{ \text{Quantification} \\ 0 \bullet 000000 } $	Analysis 000	Conclusion 000
Methods				

- Methods available for modeling nasal intensity and/or duration:
 - Motion detection: timing of nasalization gestures (e.g., velic lowering)
 - **Imaging:** velopharyngeal port opening size at any measured point
 - Acoustic: formant tracing (appearance of nasal poles/zeroes) & relationship between oral and nasal formants (e.g. Chen 1997)
 - **Nasometric:** nasalance at any given point (ratio of nasal to total energy)

$\begin{array}{c} \text{Introduction} \\ \text{00000} \end{array}$	Vowel quality 00000000	$\substack{ \text{Quantification} \\ 0 \bullet 000000 } $	Analysis 000	Conclusion 000
Methods				

- Methods available for modeling nasal intensity and/or duration:
 - Motion detection: timing of nasalization gestures (e.g., velic lowering)
 - **Imaging:** velopharyngeal port opening size at any measured point
 - Acoustic: formant tracing (appearance of nasal poles/zeroes) & relationship between oral and nasal formants (e.g. Chen 1997)
 - **Nasometric:** nasalance at any given point (ratio of nasal to total energy)
 - Aerodynamic: ratio of nasal to total airflow

$\begin{array}{c} \text{Introduction} \\ \text{00000} \end{array}$	Vowel quality	Quantification	Analysis	Conclusion
	00000000	oo•ooooo	000	000
Global score	es			

• The latter two (split-level methods) can provide a global score, with respect to an arbitrary threshold (e.g. "vowel x is 90% nasal if 9/10 of its measured points meet certain criteria").

Introduction	Vowel quality	$\begin{array}{c} \text{Quantification} \\ \text{oo}\bullet \text{oo} \text{oo} \text{o} \end{array}$	Analysis	Conclusion
00000	00000000		000	000
Global score	es			

- The latter two (split-level methods) can provide a global score, with respect to an arbitrary threshold (e.g. "vowel x is 90% nasal if 9/10 of its measured points meet certain criteria").
- Binary classification requires another threshold (e.g. "vowel x is nasal if it has a global score of 50% or more").

$\begin{array}{c} \text{Introduction} \\ \text{00000} \end{array}$	Vowel quality	Quantification	Analysis	Conclusion
	00000000	00●00000	000	000
Global scor	es			

- The latter two (split-level methods) can provide a global score, with respect to an arbitrary threshold (e.g. "vowel x is 90% nasal if 9/10 of its measured points meet certain criteria").
- Binary classification requires another threshold (e.g. "vowel x is nasal if it has a global score of 50% or more").
- Potential shortcoming: not all vowel qualities may have the same threshold for classification

$\begin{array}{c} \text{Introduction} \\ \text{00000} \end{array}$	Vowel quality 00000000	$\begin{array}{c} \text{Quantification} \\ \text{oo} \bullet \text{oo} \text{oo} \text{o} \end{array}$	Analysis 000	Conclusion 000
Global sco	res			

- The latter two (split-level methods) can provide a global score, with respect to an arbitrary threshold (e.g. "vowel x is 90% nasal if 9/10 of its measured points meet certain criteria").
- Binary classification requires another threshold (e.g. "vowel x is nasal if it has a global score of 50% or more").
- Potential shortcoming: not all vowel qualities may have the same threshold for classification
- Two claims with reversed scales in each claim:
 - Articulatory preference: high vowels may require only a very low threshold (vs. a high one for low vowels)
 - Inherent length: low vowels preferred; high rates on high vowels may be accidental

$\begin{array}{c} \text{Introduction} \\ \text{00000} \end{array}$	Vowel quality 00000000	$\begin{array}{c} \text{Quantification} \\ \text{ooo} \bullet \text{oooo} \end{array}$	Analysis 000	Conclusion 000
Height &	nasal coupling	>		

• Relationship between vowel height and nasality \rightarrow articulatory preference for high nasal vowels:

Introduction	Vowel quality	$\begin{array}{c} \text{Quantification} \\ \text{00000000} \end{array}$	Analysis	Conclusion
00000	00000000		000	000
Height &	nasal coupling	g		

- Relationship between vowel height and nasality \rightarrow articulatory preference for high nasal vowels:
 - Inherent velic position (independent of nasality) highest for high vowels, lowest for low vowels (e.g., Henderson 1984).

$\begin{array}{c} \text{Introduction} \\ \text{00000} \end{array}$	Vowel quality 00000000	$\begin{array}{c} \text{Quantification} \\ \text{00000000} \end{array}$	Analysis 000	Conclusion 000
Height &	nasal coupling			

- Relationship between vowel height and nasality \rightarrow articulatory preference for high nasal vowels:
 - Inherent velic position (independent of nasality) highest for high vowels, lowest for low vowels (e.g., Henderson 1984).
 - Nasal airflow "creeps in" on oral low vowels (e.g., Ohala 1975).

Introduction	Vowel quality	Quantification	Analysis	Conclusion
00000	00000000	000€0000	000	000
Height &	z nasal coupling			

- Relationship between vowel height and nasality → articulatory preference for high nasal vowels:
 - Inherent velic position (independent of nasality) highest for high vowels, lowest for low vowels (e.g., Henderson 1984).
 - Nasal airflow "creeps in" on oral low vowels (e.g., Ohala 1975).
 - Extremely little velic movement necessary for nasality on high vowels, both in aerodynamic terms (e.g., Bell-Berti 1993) and for perception as nasal (House & Stevens 1956, Maeda 1982).

$\begin{array}{c} \text{Introduction} \\ \text{00000} \end{array}$	Vowel quality 00000000	$\begin{array}{c} \text{Quantification} \\ \text{0000} \bullet \text{000} \end{array}$	Analysis 000	Conclusion 000
Height &	global scores			

• Global threshold may vary according to height: here, high threshold may be < low

$\begin{array}{c} \text{Introduction} \\ \text{00000} \end{array}$	Vowel quality	Quantification	Analysis	Conclusion
	0000000	00000000	000	000
Height &	global scores			

- Global threshold may vary according to height: here, high threshold may be < low
- Compare nasalization measurements on contrastive nasal vowels: often incomplete or surprisingly low (e.g., Delvaux et al. 2008, Dow 2014)

Introduction	Vowel quality	Quantification	Analysis	Conclusion
00000	00000000	00000000	000	000
Height &	global scores			

- Global threshold may vary according to height: here, high threshold may be < low
- Compare nasalization measurements on contrastive nasal vowels: often incomplete or surprisingly low (e.g., Delvaux et al. 2008, Dow 2014)
- French dialects with multi-phased nasal vowels (e.g., Delvaux 2006, Clairet 2008)

$\begin{array}{c} \text{Introduction} \\ \text{00000} \end{array}$	Vowel quality 00000000	$\begin{array}{c} \text{Quantification} \\ \text{0000} \bullet \text{000} \end{array}$	Analysis 000	Conclusion 000
Height & g	global scores			

- Global threshold may vary according to height: here, high threshold may be < low
- Compare nasalization measurements on contrastive nasal vowels: often incomplete or surprisingly low (e.g., Delvaux et al. 2008, Dow 2014)
- French dialects with multi-phased nasal vowels (e.g., Delvaux 2006, Clairet 2008)
- If complete (or even near-complete) nasalization not necessary, realization of/change to [+nasal] may be reflected in phonetics by different (minimal) scores, according to height

• Preference of nasality on long vowels, both in diachronic change (e.g. Hajek 1992, 1997) and perceptual effects (e.g., Whalen & Beddor 1989)

▲ @ ▶ < ∃ ▶</p>

- Preference of nasality on long vowels, both in diachronic change (e.g. Hajek 1992, 1997) and perceptual effects (e.g., Whalen & Beddor 1989)
- Evidence for inherent length, where low $> \text{mid} > \text{high} \rightarrow$ length parameter favoring nasalization on low vowels (Hajek & Maeda 2000)

- Preference of nasality on long vowels, both in diachronic change (e.g. Hajek 1992, 1997) and perceptual effects (e.g., Whalen & Beddor 1989)
- Evidence for inherent length, where low > mid > high \rightarrow length parameter favoring nasalization on low vowels (Hajek & Maeda 2000)
- Velum as a "sluggish" articulator (Bell-Berti 1993) with diminished control (Shelton et al. 1970) and minimal time to lower (224 to 280 ms (Bell-Berti 1980, Bell-Berti & Krakow 1991, Dalston & Seaver 1990))

- Preference of nasality on long vowels, both in diachronic change (e.g. Hajek 1992, 1997) and perceptual effects (e.g., Whalen & Beddor 1989)
- Evidence for inherent length, where low > mid > high \rightarrow length parameter favoring nasalization on low vowels (Hajek & Maeda 2000)
- Velum as a "sluggish" articulator (Bell-Berti 1993) with diminished control (Shelton et al. 1970) and minimal time to lower (224 to 280 ms (Bell-Berti 1980, Bell-Berti & Krakow 1991, Dalston & Seaver 1990))

Introduction	Vowel quality	$\begin{array}{c} \text{Quantification} \\ \text{oooooooo} \\ \text{oo} \end{array}$	Analysis	Conclusion
00000	00000000		000	000
Length issu	ıes			

 Minimal transition period + inherently short length of high vowels → high percentages of nasalization may merely be indicative of phonetic, not phonological nasalization

$\begin{array}{c} \text{Introduction} \\ \text{00000} \end{array}$	Vowel quality 00000000	$\begin{array}{c} \text{Quantification} \\ \text{oooooooo} \\ \text{oo} \end{array}$	Analysis 000	Conclusion 000
Length issu	.es			

- Minimal transition period + inherently short length of high vowels → high percentages of nasalization may merely be indicative of phonetic, not phonological nasalization
- In other words: x% on vowel A not necessarily = x% on vowel B, as a function of duration

$\begin{array}{c} \text{Introduction} \\ \text{00000} \end{array}$	Vowel quality 00000000	$\begin{array}{c} \text{Quantification} \\ \text{oooooooo} \\ \text{oo} \end{array}$	Analysis 000	Conclusion 000
Length issu	es			

- Minimal transition period + inherently short length of high vowels → high percentages of nasalization may merely be indicative of phonetic, not phonological nasalization
- In other words: x% on vowel A not necessarily = x% on vowel B, as a function of duration
- Multiple rate reading task (Solé 1992): does nasal duration increase with overall duration (phonological) or remain the same (phonetic)?

$\begin{array}{c} \text{Introduction} \\ \text{00000} \end{array}$	Vowel quality 00000000	$\begin{array}{c} \text{Quantification} \\ \text{oooooooo} \\ \text{oo} \end{array}$	Analysis 000	Conclusion 000
Length issu	ues			

- Minimal transition period + inherently short length of high vowels → high percentages of nasalization may merely be indicative of phonetic, not phonological nasalization
- In other words: x% on vowel A not necessarily = x% on vowel B, as a function of duration
- Multiple rate reading task (Solé 1992): does nasal duration increase with overall duration (phonological) or remain the same (phonetic)?
- Durational information may be worked into measurements...

Introduction	Vowel quality	$\begin{array}{c} \text{Quantification} \\ \text{ooooooo} \bullet \end{array}$	Analysis	Conclusion
00000	00000000		000	000
Summary				

- Phonological representations: in communication with phonetics but based on phonological evidence; can be abstract & substantially transformed by *phonetic* rules
- **Oral or nasal?** Further work on thresholds and duration needed, especially for contextually nasalized vowels.

Introduction	Vowel quality	$\begin{array}{c} \text{Quantification} \\ \text{00000000} \end{array}$	Analysis	Conclusion
00000	00000000		●00	000
Outline				

1 Introduction

- 2 Issues in vowel quality
- 3 Issues in nasality quantification
- 4 Sketching an analysis

5 Conclusion

Introduction	Vowel quality	Quantification	Analysis	Conclusion
00000	00000000	00000000	o∙o	000
Considerat	ions			

• 3 major aspects: terms, directionality and members

$\begin{array}{c} \text{Introduction} \\ \text{00000} \end{array}$	Vowel quality 00000000	$\begin{array}{c} \text{Quantification} \\ \text{00000000} \end{array}$	Analysis 0●0	Conclusion 000
Considerat	ions			

- 3 major aspects: terms, directionality and members
- Terms: height? backness? sonority?
 → Sonority: assumption that nasal vowels mirror oral vowels to some degree

$\begin{array}{c} \text{Introduction} \\ \text{00000} \end{array}$	Vowel quality 00000000	$\begin{array}{c} \text{Quantification} \\ \text{00000000} \end{array}$	Analysis o●o	$\operatorname{Conclusion}_{000}$
Considerati	ons			

- 3 major aspects: terms, directionality and members
- Terms: height? backness? sonority?
 → Sonority: assumption that nasal vowels mirror oral vowels to some degree
- Directionality: high > low? low > high? ... > central?
 → high > low (i.e., low is never more marked than anything else): no inventory (allophonic & contrastive) in Ruhlen's (1975) survey excludes low nasal vowels; singleton low nasal vowel inventory possible

$\begin{array}{c} \text{Introduction} \\ \text{00000} \end{array}$	Vowel quality 00000000	$\begin{array}{c} \text{Quantification} \\ \text{00000000} \end{array}$	Analysis o●o	$\operatorname{Conclusion}_{000}$
Considerati	ons			

- 3 major aspects: terms, directionality and members
- Terms: height? backness? sonority?
 → Sonority: assumption that nasal vowels mirror oral vowels to some degree
- Directionality: high > low? low > high? ... > central?
 → high > low (i.e., low is never more marked than anything else): no inventory (allophonic & contrastive) in Ruhlen's (1975) survey excludes low nasal vowels; singleton low nasal vowel inventory possible
- Members: what distinctions are expected?
 → front vs. back distinction in peripheral (non-low?)

vowels: motivated by data in Dow (2014) but findings in Parker (2002) may provide less ad hoc support

	Vowel quality	Quantification	Analysis	Conclusion
00000	0000000	0000000	000	000

(5) Nasal Vowel Markedness Hierarchy

High central	>	Mid central	>	High back	>	High front	>	Mid back	>	Mid front	>	Low
ĩ	>	õ	>	ũ	>	ĩ	>	õ	>	ẽ	>	ã

An example of each category is given. 'x > y' = y' is never more marked than x.'

Predictions in stringency (e.g., de Lacy 2006):

	Vowel quality	Quantification	Analysis	Conclusion
00000	0000000	0000000	000	000

(5) Nasal Vowel Markedness Hierarchy

High central	>	Mid central	>	High back	>	High front	>	Mid back	>	Mid front	>	Low
ĩ	>	õ	>	ũ	>	ĩ	>	õ	>	ẽ	>	ã

An example of each category is given. 'x > y' = y' is never more marked than x.'

Predictions in stringency (e.g., de Lacy 2006):

• Impossibility of language without low nasal vowel

	Vowel quality	Quantification	Analysis	Conclusion
00000	0000000	0000000	000	000

(5) Nasal Vowel Markedness Hierarchy

High central	>	Mid central	>	High back	>	High front	>	Mid back	>	Mid front	>	Low
ĩ	>	õ	>	ũ	>	ĩ	>	õ	>	ẽ	>	ã

An example of each category is given. 'x > y' = y' is never more marked than x.'

Predictions in stringency (e.g., de Lacy 2006):

- Impossibility of language without low nasal vowel
- Absence of true raising processes in prosodically prominent positions: troublesome (e.g., Beddor 1982), but requires trustworthy data and analysis

	Vowel quality	Quantification	Analysis	Conclusion
00000	0000000	0000000	000	000

(5) Nasal Vowel Markedness Hierarchy

High central	>	Mid central	>	High back	>	High front	>	Mid back	>	Mid front	>	Low
ĩ	>	õ	>	ũ	>	ĩ	>	õ	>	ẽ	>	ã

An example of each category is given. 'x > y' = y' is never more marked than x.'

Predictions in stringency (e.g., de Lacy 2006):

- Impossibility of language without low nasal vowel
- Absence of true raising processes in prosodically prominent positions: troublesome (e.g., Beddor 1982), but requires trustworthy data and analysis
- What to do with minor height shifts (e.g., $/\tilde{e}/ \rightarrow [\tilde{\epsilon}])$?

Introduction	Vowel quality	Quantification	Analysis	$ \begin{array}{c} \text{Conclusion} \\ \bullet \\ 0 \\ \end{array} $
00000	00000000	00000000	000	
Outline				

1 Introduction

- 2 Issues in vowel quality
- 3 Issues in nasality quantification
- 4 Sketching an analysis

Introduction	Vowel quality	Quantification	Analysis	$ \begin{array}{c} \text{Conclusion} \\ \circ \bullet \circ \end{array} $
00000	00000000	00000000	000	
Conclusion				

- Much remains to be done before a unified theory of nasal vowel markedness is feasible
- Issues in nasal vowel classification (stemming from quantification) seem to be most daunting, but parallels may exist in variable or incomplete phonetic indices of other phonological properties (e.g. [voice])
- Though the phonetic aspects of nasal vowels remain complicated, establishing a reliable empirical basis *with phonology in mind* is key

$\begin{array}{c} \text{Introduction} \\ \text{00000} \end{array}$	Vowel quality	Quantification	Analysis	Conclusion
	00000000	00000000	000	$00\bullet$
Acknowled	gments			

I would like to thank:

- My funding sources: NSF grant #1360758 and the departments of Linguistics and French & Italian at Indiana University
- My informants and others who helped in field work
- The members of my committee, especially Julie Auger
- Véronique Delvaux and Angélique Amelot
- Countless others, who helped with technical and theoretical aspects
- And the conference organizers and host institutions. Moltes gràcies!