Liquid consonants and onset sonority in Dogon languages

> Michael Dow Université de Montréal

50 ans de linguistique à l'UQAM

March 28, 2020 April 24, 2021

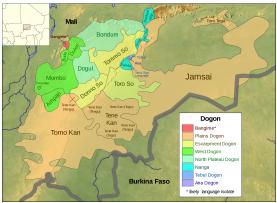
Introduction

Introduction $\bullet 00$	Background 000	Methodology 000000	Results 0000000	Discussion 00000	
Goals					

- Looking at lexical patterns in Dogon languages in the hopes of explaining the exceptional behaviour of liquid consonants in many of these languages. For example:
 - Dissimilation-like behaviour affecting both affix consonants (e.g., Ben Tey /pile-le/ \longrightarrow [pile-re] 'white-INCHOATIVE'; Heath 2015a) and root consonants (e.g., Nanga /kɔri-ri/ \longrightarrow [kɔlli-ri] 'hook-REVERSIVE'; Heath 2016)
 - Liquid mutations (e.g., Toro Tegu [bɛru] 'near' ~ [bɛla] 'near-INCH'; Heath 2015b)
 - A 'flip-frop' (e.g., Ben Tey /ru-li/ \rightarrow [ri] 'moist-INCH'; Dow et al. 2017)
- Emergent preference for onset profile [l...r], usually between second and third syllables at a morpheme boundary.

Introduction $0 \bullet 0$	Background 000	Methodology 000000	Results 0000000	Discussion 00000	
Existing	analyses				

- Prosody seems important in capturing these facts:
 - Toro Tegu (Heath, 2015b): Unstressed vowel deletion leads to rhotic deletion /beru-la/ \longrightarrow |ber-la| \longrightarrow [bela] 'far-INCH'
 - Ben Tey (Dow et al., 2017): Embedded feet (superfeet) in trisyllabic words fortify second position
- Unfortunately, little is written about Dogon prosody, besides trochaic (or "second-syllable weakness") analysis (Heath, 2008; McPherson, 2013)


Introduction 00Φ	Background 000	Methodology 000000	Results 0000000	Discussion 00000	
Today's t	alk				

- Lexical statistics from a corpus of 12 Dogon languages (nearly 29,000 monomorphs): Which onset consonants do we observe, according to syllable position and word length?
- Brief comparison with French
- Groundwork for future analysis: sonority licensing according to strength of position

Background

Introduction	Background	Methodology	Results	Discussion	
000	●00	000000	0000000	00000	
Dogon la	nguages				

• Family of ~20 Niger-Congo languages mostly spoken in Mali, Mopti province

Introduction	Background	Methodology	Results	Discussion	
000	o●o	000000	0000000	00000	
Sonority	& onsets				

- Cross-linguistically, lower-sonority consonants such as stops are preferred in onset positions.
- There are perceptual as well as theoretical explanations for this tendency (e.g., Smith, 2004).
- Generally, despite these preferences, we don't see the same kind of language-internal restrictions on onsets that we see on codas, all things being equal (Rousset, 2004)

Introduction	Background	Methodology	Results	Discussion	
000	00●	000000	0000000	00000	
Tying in	prosody				

- However, we can see disparities in non-assimilative neutralization such that sounds increase in sonority in weak positions, such as coda position and foot-internal onsets (Harris, 1997)
- In terms of structure, this can generally be seen as a failure to authorize extra material in such positions, for instance, in terms of elements or the sort of *xo* theory approach to sonority used in De Lacy (2006).
- Lower-sonority onsets can even contribute weight and attract stress by virtue of their sonority (e.g., Gordon, 2005; Ryan, 2019)
- In other words, obstruents generally have more structure than sonorant consonants, and stronger positions allow for this (at the language's discretion).

Methodology

Introduction	Background	Methodology	Results	Discussion	References
000	000	•00000	0000000	00000	
Corpus c	onstruction	n			

- Initial data collected from the Lexicon page of the Dogon and Bangime Languages website (Moran et al., 2016).
- Preliminary processing:
 - Tones and vowel length removed
 - Clitic-affix distinction levelled (e.g., '=' replaced by '-')
 - All English or metalinguistic material removed
 - Complex words split by whitespace (e.g., Ampari [kìmé-gé dèndè] 'mushroom (with cap)' → [kimɛ-ge] and [dɛndɛ])
- Polymorphemic forms identified via '-' and removed
- Language-internal duplicates removed and variants within entries (incl. reduplication) reduced to single form (e.g., Perge Tegu [wárú wàrá] 'work in the fields' \longrightarrow [wara])
- Languages with fewer than 1000 forms remaining removed for a total of 28,795 forms from 12 languages

Introduction	Background	Methodology	Results	Discussion	References
000	000	o●oooo	0000000	00000	
Corpus:	Monomorp	\mathbf{hs}			

Language	Forms	Language	Forms
Bankan Tey	2350	Perge Tegu	2118
Ben Tey	2777	Togo Kan	1858
Jamsay	2268	Tommo So	2602
Mombo	3115	Toro Tegu	2459
Najamba-Kindige	2754	Yanda Dom	2189
Nanga	2463	Yorno So	1965

Table 1: Number of forms in database per language

Introduction	Background	Methodology	Results	Discussion	
000	000	oo●ooo	0000000	00000	
Segment	ation				

- Consonants separated into larger classes (P: plosives & affricates, F: fricatives, N: nasals, L: laterals, R: rhotics, J: semivowels) and vowels defined as 'V'
- Coronal stops ('T') tagged separately (in case of flapping analysis)
- Generalized transcriptions created based on classes (e.g., [balaŋgal] 'pole for harnessing donkeys' → PVLVNPVL)
- Gliding assumed in non-low V₁ + any V₂ sequences (in keeping with McPherson, 2013), otherwise "dummy" character '' used for onsetless syllables

Introduction 000	Background 000	Methodology 000●00	Results 0000000	Discussion 00000	
Syllabific	ation				

- Syllabification automatically performed on generalized transcriptions with Regular Expressions, with verification of random subsets performed throughout
- Only final consonant of (rare) clusters placed in onset, as complex onsets are disallowed in Dogon languages (with the exception of consonant + semivowel sequences, whose first member was selected).
- Problematic? Probably not. (Only 12 forms with internal obstruent + liquid sequences, 86 consonant + semivowel)

Introduction	Background	Methodology	Results	Discussion	
000	000	oooo∙o	0000000	00000	
Data					

- All remaining onsets were extracted with reference to left-edge and '.', along with:
 - Total number of syllables (V count)
 - Each onset's respective position (i.e., first syllable, second, and so on)
- Proportion tables for onset sonority profile (e.g., P...P, etc.) over two adjacent syllables calculated within languages, according to word size and syllable position
- This gives us, separately:
 - $\sigma 1 \sigma 2$ profile in words containing 2, 3 and 4 syllables
 - $\sigma 2 \sigma 3$ profile in words containing 3 and 4 syllables
 - $\sigma 3 \sigma 4$ profile in words containing 4 syllables

Introduction	Background	Methodology	Results	Discussion	
000	000	ooooo●	0000000	00000	
Example					

1.	[báúrú bàúró]	[gìwn	á ìsìndà]	importation
2.	bauru baurə	giwn	a isinda	tone removal
3.	bauru bauro	giwna	isinda	complex word separation
4.	bauro			competitor elimination
5.	ba.urɔ		.isinda	onsetless syllable resolution
6.	PV.VRV	PVJNV	.VFVNTV	sonority categorization
7.	$\{P, ., R\}$	$\{P, N\}$	$\{., F, T\}$	onset sonority extraction
8.	$\{a, u, o\}$	$\{i, a\}$	$\{i, i, a\}$	vowel extraction
9.	3	2	3	syllable count

Table 2: Processing of two representative entries

Introduction	Background	Methodology	Results	Discussion	References
000	000	000000	•000000	00000	
Guide to	figures				

- Languages broken out
- Onsetless syllables removed for legibility
- Earlier syllable on bottom
- Sonority increasing left to right and bottom to top within each breakout
- Shading indicates proportion of onset combination within conditions (language & length)
- For instance, 188 PVPV disyllables in Tommo So, vs. 68 PVRV

		_			nkan '	T			_			en Te			_	_			lamsa			_	_			Aomb			
						-	_						-	_						_	_							_	
	J	45	32		10	7		5	75	46	31	28	12		5	37	22	19	10	9		6	48	37	11	26	1		12
	R	136	51	57	37	7		24	167	60	43	38	16		33	125	40	30	19	14		30	59	21	19	13			13
	Ŀ	30	13	13	3			8	84	19	23	11	8		8	36	5	12	4	3		8	120	42	26	27	1		36
	N	30	29	32	38	5	1	3	42	31	24	26	2	2	3	112	57	39	54	3	1	9	92	46	22	48	1		7
	F	76	26	28	17	2		13	82	29	16	12	8		15	28	17	11	3	7	1	10	19	3	6	8	1		5
	T	98	25	31	16	2	1	10	58	31	32	12	5	1	9	53	7	28	11	3		5	102	39	14	32	2		8
	P	126	78	74	17	14	2	19	191	97	76	34	14	1	36	151	58	42	11	23	2	33	284	138	83	86	3		40
				Najar	nba-K	indige	,					Vang						Pe	rge T	egu					т	igo K	an		
	J	32	18	10	13	2		9	48	24	22	8	4		6	39	25	15	15	6		5	30	16	11	9	9		7
	R	77	28	22	10	2		17	122	50	37	30	9		30	114	40	34	24	15		31	112	42	26	22	14		25
	Ŀ	101	24	16	14	2		11	26	4	8	4	4		7	75	15	15	14	8		10	22	5	9	1	2		4
	ΩN	84	65	36	49	3	1	3	58	49	28	26	6	3	4	38	20	22	20	3	2	3	122	56	37	65	1		8
	F	20	7	12	14	2		5	62	27	5	12	4		8	51	17	12	10	6		9	10	3	7	2	1	1	2
	T	109	29	31	25	2		13	102	27	21	16			10	56	16	21	11	3		7	28	8	5	3	2		1
	p	326	151	91	76	8	2	40	170	_	53	19	17	1	30	160	88	66	31	12	2	36	110	34	39	3	16		25
		_			mmp							ro Te							nda D							orno S			
	د م	23	14	8	7	1		1	38	24	20	11	11		11	16	10	14	7	1		2	14	13	7	7	2		5
	Ĩĸ		27	12	4	÷		19	114		48		8		22	48	11	23	12	2		5	76	29	20	14	6		16
÷		108		27	21	2		29	66	27	40	6	14		11	63	23	20	5	÷.		8	71	18	21	14	7		15
sonority	N	143		36	60	2		29		54	36	42	4	2	12	99	54	34	36			9	142	80	35	50	3		18
ĕ	F	143	5	30 6	8	2	1		86 68	-	20		4	2	12	68	18	24	30 13	2		9	142	2	35	50	2		10
S	1.1	-					1	2		25		19								0					4		2		
	T	126		29	18			18	60	16	28	14	2		11	87	43	27	16	7		17	30	9	16	5			3
	P	-	100		51	3		38	99	72	58	20	21	1	19	122	77	55	15	14		22	162	71	41	7	24		42
		Ρ	Ť	F	Ν	L	R	J	P	Т	F	Ň	L	R	J	1 P	Т	F	Ń	L	R	J	P	ſ	F	Ν	L	R	J
			3	sor	nor	rity	/																						
				т	••					1				0						0				1					
				F	1	g.	- 2	4.	σ	. T	v	•	σ	2	0	ns	se	ts	:	20	τ	W	or	d	\mathbf{s}				

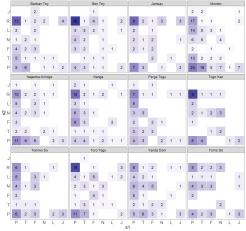
Introduction	Background	Methodology	Results	Discussion	References
000	000	000000	0●00000	00000	
Disvllabi	c words				

- Gradient effect in σ1; R practically non-existent
- General preference for stops in σ1 onset
- P...P is most frequent profile in several languages...
- ... but note frequency of N & R $\sigma 2$ onsets, esp. in Togo Kan and Yorno So

			Ba	nkan '	Tey					8	len Te	W.					J	amsa	у)	Aomb	•		
J	45	32	29	10	7		5	75	46	31	28	12		5	37	22	19	10	9		6	48	37	11	26	1		1
R	136	51	57	37	7		24	167	60	43	38	16		33	125	40	30	19	14		30	59	21	19	13			1
L	30	13	13	3			8	84	19	23	11	8		8	36	5	12	4	3		8	120	42	26	27	1		3
N	30	29	32	38	5	1	3	42	31	24	26	2	2	3	112	57	39	54	3	1	9	92	46	22	48	1		7
F	76	26	28	17	2		13	82	29	16	12	8		15	28	17	11	3	7	1	10	19	3	6	8	1		5
Т	98	25	31	16	2	1	10	58	31	32	12	5	1	9	53	7	28	11	3		5	102	39	14	32	2		8
P	126	78	74	17	14	2	19	191	97	76	34	14	1	36	151	58	42	11	23	2	33	284	138	83	86	3		4
			vajan	ıba-K	indige	,					Nangi						Pe	rge Ti	igu					To	igo K	an		
J	32	18	10	13	2		9	48	24	22	8	4		6	39	25	15	15	6		5	30	16	11	9	9		7
R	77	28	22	10	2		17	122	50	37	30	9		30	114	40	34	24	15		31	112	42	26	22	14		2
L	101	24	16	14	2		11	26	4	8	4	4		7	75	15	15	14	8		10	22	5	9	1	2		4
ΩN	84	65	36	49	3	1	3	58	49	28	26	6	3	4	38	20	22	20	3	2	3	122	56	37	65	1		8
F	20	7	12	14	2		5	62	27	5	12	4		8	51	17	12	10	6		9	10	3	7	2	1	1	2
Т	109	29	31	25	2		13	102	27	21	16			10	56	16	21	11	3		7	28	8	5	3	2		1
Р	326	151	91	76	8	2	40	170	96	53	19	17	1	30	160	88	66	31	12	2	36	110	34	39	3	16		2
			To	mmo	So					To	xo Te	gu					Ya	nda D	om					Y	orno i	So		
J	23	14	8	7	1		1	38	24	20	11	11		11	16	10	14	7	1		2	14	13	7	7	2		1
R	68	27	12	8	1		19	114	44	48	14	8		22	48	11	23	12	2		5	76	29	20	14	6		1
L	108	33	27	21	2		29	66	27	40	6	14		11	63	23	20	5	4		8	71	18	21	1	7		1
N	143	89	36	60	2		19	86	54	36	42	4	2	12	99	54	34	36	2		9	142	80	35	50	3		1
F	13	5	6	8		1	2	68	25	20	19	5		11	68	18	24	13	5		12	11	2	4		2		1
Т	126	23	29	18			18	60	16	28	14	2		11	87	43	27	16	7		17	30	9	16	5			
P	188	100	59	51	3		38	99	72	58	20	21	1	19	122	77	55	15	14		22	162	71	41	7	24		4
	P	Ť	É	Ń	Ĺ	Ŕ	Ĵ	Ý	Ť	É	Ň	Ĺ	Ř	J	P	Ť	É	Ń	Ĺ	Ŕ	j	P	Ť	É	Ň	Ĺ	Ř	

Fig. 3. $\sigma 1$ v. $\sigma 2$ onsets: 2σ words

$\sigma 1 - \sigma 2$	trisyllahic	words			
000	000	000000	000000	00000	
Introduction	Background	Methodology	Results	Discussion	References


- Stops again preferred in σ1 onsets.
- Higher-sonority σ3 onsets appear less prevalent.

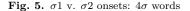

			Bar	ıkan '	Геу					8	en Te	W.					J	amsa	у)	Aomb	0		
J	5	2	5		1		4	6	5	2		1		3	4	2	1		1		2	15	15	8	8	1		5
R	30	11	7	7	1		5	30	9	9	7	1		8	42	12	7	3	4		10	41	4	5	5			11
L	13	5	9	2	1		4	37	12	1	4	1		3	17	6	5	4			3	67	16	20	15			17
N	29	7	8	7	2	1	3	27	9	14	11	1		1	59	24	14	22			5	38	27	15	29			2
F	17	4	8	7	3		6	13	5	12	10	4		3	9	2	12	5	4		3	2		5	4	3		2
Т	42	9	10	5			4	25	6	12	5	3		2	26	6	9	3	3		3	48	16	12	15	2		3
P	84	35	33	12	12		13	92	29	33	24	13		26	55	17	32	6	17		16	153	95	60	50	6		27
			чајант	iba-K	indige						Nangi						Pe	rge Ti	igu					То	igo K	an		
J	5	3	1	2	1		2	9	4	3		1		2	4	2	2				3	15	8	6	4	3		2
R	29	3	2	1			1	44	18	14	9	4		9	28	3	4	6	1		4	40	3	14	3			4
L	25	8	7	6				6	2	5	2	1			15	7	3	2			4	8	3	3	1			
ΩN	32	11	9	12	1		2	38	13	22	22			4	27	7	8	10	1		1	46	14	21	24	3		3
F	10	3	4	10	3		2	18	8	3	5	6		1	7	4	6	4	2		1	2		5	2	5		
Т	19	27	12	3	1		2	45	7	16	8	2		2	20	3	9	3	2		1	18	14	10	2	2		1
P	129	54	47	22	8	1	13	101	43	39	19	18		27	87	32	25	13	13		19	67	23	17	5	7		20
			То	mmo	So					To	ro Te	gu					Yar	nda D	om					Y	orno i	So		
J	4	3		1			2	2	4	2	2	2		6	2	3	1					3	2	2	1			1
R	28	5	10	2			5	42	7	11	2	1		7	18	4	4	1			4	27	2	1	2			1
L	31	7	18	5	1		1	21	15	8	3	2		2	23	9	9		2		4	9		1	3			
N	48	23	10	16		1	12	28	16	14	12			5	27	22	16	9			5	23	22	7	11	1		7
F	1	3	2	5	3			15	5	15	8	3		5	18	4	8	8	7		4	1			2	3		
Т	29	6	11	5	1		3	20	11	10	8	1		4	20	9	11	4	4		4	10	2	4	2	2		2
P	81	52	36	24	2		19	100	51	46	12	18	1	20	67	30	26	10	12		10	57	22	21	7	11		16
	P	Ť	É	Ń	÷	Ŕ	j	P	Ť	É	Ň	1	R	J	P	Ť	É	Ň	1	Ŕ	j	P	Ť	É	Ň	T.	Ř	Ĵ

Fig. 4. $\sigma 1$ v. $\sigma 2$ onsets: 3σ words

 $\begin{array}{c|c} \mbox{Introduction} & \mbox{Background} & \mbox{Methodology} & \mbox{Results} & \mbox{Discussion} & \mbox{References} \\ \hline \sigma 1 - \sigma 2, \mbox{ 4-syllable words} \end{array}$

- Marked decrease in total number of forms
- The relationship is less clear but seems to be either P...R or split between P...P and P...R

Results 0000000

$\sigma 2 - \sigma 3$, trisyllabic words

- Preference for σ_3 onset R in most languages
- Greater prevalence of P and/or L in σ 3 onsets of Mombo, Najamba-Kindige, Tommo So and Yanda Dom
- Most languages disprefer liquid co-occurrences, with exception of: L...R in Ben Tey, Perge Tegu and Toro Tegu; L...L in Mombo and Tomo So; R...R in Toro Tegu

			Ba	nkan '	Tey					8	en Te	W.					J	amsa	у						Momb	0		
J	18	2	9	6	3	27	4	15	1	7	6	9	29	5	4	3	3	5	8	38		4	1		3	7		
R	104	34	13	27	2	1	4	130	21	20	27	29	1	5	89	20	13	78	7	3	3	67	9	4	4		1	13
Ŀ	15	11	3	1	6			26	7	4	2		3		7	7	1	2	1	5		158	31	6	21	17	7	14
N	10	10	6	9	2	4	1	4	7	4	8		6	1	10	8	6	27	3	3		49	25		33	27	11	11
F	18	1	2	1	3	7	3	26	2	3	1	3	1	2	2	2	2	3	2	2	2	3		1	2	2	1	
T	19	1	7	3	5	7	2	8	2	6	5	6	3	1	8	1	3	5	6	4	2	21	4	1	3	4	15	3
P	5	11	5	10	13	15	3	8	13	3	14	11	21	3	23	9	7	4	8	23	3	89	26	4	45	78	31	11
			Najan	iba-K	indige	,				- 1	Nanga						Pe	rge Ti	igu					Т	ogo K	an		
J	9	4		2	6	10		15	13	5	5	1	31	4	11	1		10	3	21	1	5			4		8	1
R	68	8	10	11	2	1	3	154	33	21	63	4	1	5	113	15	15	21	16		1	86	24	6	83	3		32
L	96	17	3	20	4		1	8	6		1	1		1	13	7	2			2	1	16	5	2	2		5	1
ΩN	18	14	3	8	2	1	3	6	5	1	11	2	17	2	9	3	1	5	2	3	1	6	6	2	9		6	
F	3	1	1	2	2	1	2	33	1	7	1	1	3	1	29	2	1	1	2	2	2			1	2	2	4	2
T	24	1	4	11	10	8	3	8	2	3	13	2	16	3	6		2	4	4	3	1	1	1	2	1	3	3	
Ρ	56	19	11	13	20	15	2	23	20	4	5	5	30	3	8	10	3	13	4	15	4	25	11	1	10	7	38	2
			To	mmo	So					To	ro Te	gu					Ya	nda D	mo					Y	orno i	So		
J	11	3		14	7	4		12	1	5	6	2	10		9	12	13	18	29	2					2			
R	64	10	6	11	3		3	129	24	19	16	17	10	8	53	11	10	16	2		1	69	12	2	35	1		3
L	84	16	1	40	12	6	3	26	6	5	8	4		1	46	7	13	30	1			30	2		16	1	1	
N	8	11	2	9	17	11		13	12	6	29	4	15	1	6	11	2	4	1	4	2	2	4		10	2	7	1
F	3	1	1	3	2	2		20	1	3	7	3	2	6	18		3	1	3	2		1				3		1
T	33	4	3	7	7	9	2	30		5	5	6	6	1	14	3	2	3	2	7	1	3		2	1	2	10	1
Ρ	11	10	1	26	15	18	2	18	10	8	4	15	27	1	9	8	6	7	9	16	2	29	4	2	7	4	15	3
	P	Ť	É	Ń	Ĺ	Ŕ	Ĵ	P	Ť	É	Ň	Ĺ	R	J	P	Ť	É	Ń	Ĺ	Ŕ	Ĵ	P	Ť	È	Ň	Ĺ	Ŕ	Ĵ

Fig. 6. $\sigma 2$ v. $\sigma 3$ onsets: 3σ words

Introduction Background Methodology σ_{000} Besults Discussion References σ_{000} σ_{00000} σ_{00000}

- Much more varied, likely due to relative rarity
- Unclear trends in σ2 onset; preference for P in σ3 in almost all languages
- Clear R... P profile in Bankan Tey, Ben Tey and Toro Tegu (these are the same that showed clear σ1-σ2 P... R preference)
- Mombo again exceptional (preference for σ3 L)

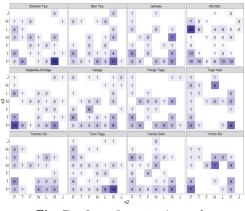


Fig. 7. $\sigma 2$ v. $\sigma 3$ onsets: 4σ words

Introduction Background Methodology σ_{000} Results Discussion References σ_{000} σ_{000} σ_{0000} σ_{00000} References σ_{00000} σ_{00000} σ_{00000} References σ_{00000} σ_{000000} σ_{000000} σ_{000000} σ_{000000} σ_{000000} σ_{000000} σ_{000000} σ_{000000}

- General reemergence of P...R pattern, with some exceptional cases
- 4-syllable trends in monomorphs should generally be taken with a grain of salt

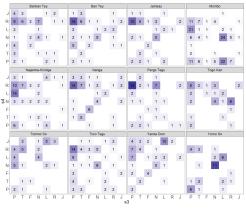
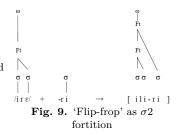
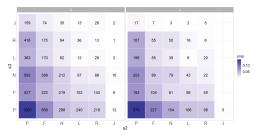


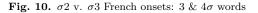
Fig. 8. σ 3 v. σ 4 onsets: 4σ words


Introduction	Background	Methodology	Results	Discussion	
000	000	000000	0000000	●0000	
Summary					

- Low-sonority onsets are preferred in **first position** in all word sizes.
- Trisyllabic words also show a greater affinity for low-sonority onsets in **second syllables**, whereas many languages prefer R in this position in even-parity forms (other languages preferring other types of high-sonority onsets).
- **Third-syllable** onsets are generally R (or higher sonority) in trisyllabic forms and stops in 4-syllable forms.
- Fourth-syllable onsets return to a preference for higher sonority (esp. R).

Introduction	Background	Methodology	Results	Discussion	
000	000	000000	0000000	0●000	
So what?					


- In sum, a preference for higher sonority onsets (esp. R) is arguably predictable with respect to the right edge in many languages.
- This should not be taken as suggestive that relevant constraints or parameters *actively* shape onset profiles, especially in simple roots.
- However, through generalization over the lexicon, emergent constraints could motivate the alternations that we do see in morphologically complex forms, going back to the processes cited in the introduction.


- Dow et al. (2017) explain /r...l/ →
 [l...r] in Ben Tey as "fortition" of weak positions in superfeet (cf. Fig. 9)
- I now see this analysis as suggesting these three syllables are strong (foot and superfoot head), weak and semi-weak (foot head but superfoot non-head) respectively.
- Essentially, the lower sonority [l] would be derived in a weaker position.
- These facts and the current results make more sense to me now if right-edge syllables are prosodically *weak* and penultimate syllables are *strong*—thus, formation of trochees from right-edge.

Introduction Background Methodology Results Discussion References

- Maybe. The same methodology, applied to French using Lexique (Gimenes et al., 2020), showed a very neat gradient effect within monomorphs.
- We should look at languages with distinctive stress to see if we get similar gradience across the board or positional effects.

Introduction
ocoBackground
ocoMethodology
ocococoResults
ocococoDiscussion
ococoReferencesFuture work/Open questions

- "Brute force" identification of monomorphs. There could be unencoded or fossilized suffixes.
- Some describe <r> as a flap. Is the prevalence of rhotic onsets just a product of a flapping process? I'm not inclined to think so—I don't see glaring gaps in P...T where P...R is prevalent.
- Dogon languages generally allow only high-sonority codas, and we frequently get word-final <r> as a result of V ~ Ø.
 If word-final epenthesis is secretly driving up these right-edge high-sonority consonants, we should expect them to pattern more frequently with epenthetic vowel qualities (whether "default" vowels or via vowel copy).

Introduction 000	Background 000	Methodology 000000	Results 0000000	Discussion 00000	References
Works Ci	ited I				

- De Lacy, Paul. 2006. Markedness: Reduction and preservation in phonology. Cambridge University Press.
- Dow, Michael, Christopher Green, and Ryan Hendrickson. 2017. Elucidating Dogon prosodic structure: The case of liquid 'flip-frops' in Beni (Dogon). Annual Conference on African Linguistics.
- Gimenes, Manuel, Cyril Perret, and Boris New. 2020. Lexique-infra: grapheme-phoneme, phoneme-grapheme regularity, consistency, and other sublexical statistics for 137,717 polysyllabic french words. *Behavior Research Methods* : 1–9.
- Gordon, Matthew. 2005. A perceptually-driven account of onset-sensitive stress. *Natural Language & Linguistic Theory* 23(3): 595–653.
- Harris, John. 1997. Licensing inheritance: an integrated theory of neutralisation. *Phonology* 14(3): 315–370.
- Heath, Jeffrey. 2008. A grammar of Jamsay, vol. 45. Walter de Gruyter.
- Heath, Jeffrey. 2015a. A grammar of Ben Tey (Dogon of Beni). Unpublished manuscript.

Introduction	Background	Methodology	Results	Discussion	References
000	000	000000	0000000	00000	
Works Cited II					

- Heath, Jeffrey. 2015b. A grammar of Toro Tegu (Dogon): Tabi Mountain dialect. Unpublished manuscript.
- Heath, Jeffrey. 2016. A grammar of Nanga: Dogon language family, Mali. Unpublished manuscript.
- McPherson, Laura. 2013. A grammar of Tommo So, vol. 62. Walter de Gruyter.
- Moran, Steven, Robert Forkel, and Jeffrey Heath, eds. 2016. Dogon and Bangime Linguistics. Jena: Max Planck Institute for the Science of Human History. URL https://dogonlanguages.org/.
- Rousset, Isabelle. 2004. Structures syllabiques et lexicales des langues du monde données, typologies, tendances universelles et contraintes substantielles. Ph.D. thesis, Université Stendhal-Grenoble III.
- Ryan, Kevin M. 2019. Prosodic end-weight reflects phrasal stress. Natural Language & Linguistic Theory 37(1): 315–356.
- Smith, Jennifer L. 2004. *Phonological augmentation in prominent positions*. Routledge.