Let me see that truncussy:
Elucidating patterns in a novel blending meme
MOT 2018 (McMaster University)

Michael Dow
Université de Montréal

March 24, 2018
Introduction
Appearance & explosion of “one thicc bih” meme (text and Ditty videos, e.g. Fig. 1) in May 2017

Format: “x is one thicc bih, let me see that y”; $x =$ character or famous personality; $y =$ blend of x (or related word) and pussy

Fig. 1: Babadook > babussy
Source: dcparkers, 06/2017
What’s in a meme?

- Documented -(u)ssy blends date back to early 2010s in gay slang, re-popularized by an April 2017 Tumblr post
- thicc & bih AAVE slang (together ≈ “sexy individual”), each documented back as far back as early 2000s
- Memetic nature of “ussification” may resolve empirical problems in study of blends:
 - Difficulty of automatic collection/recognition (Fradin 2015) → ease of collecting large corpus of meme
 - High degree of variation within and across languages (different “species”) → controlled setting (W₂ remains constant) allows for isolation of factors in W₁
 - Differing degrees of felicity → several metrics (e.g., meme-user judgments, retweets & likes) can make sense of variation
Life cycle of a meme

- Widespread media recognition (e.g. *New York Magazine*, *Buzzfeed*) \(\rightarrow\) Ditty app #1 on iTunes store (May 2017)
- Decline around July 2017 (Fig. 2)

![Graph showing interest over time]

Fig. 2: “one thicc bih” in Google trends
Main questions

-

- (u)ssy blends still in use, e.g. @UssyBot & spikes in grussy (‘Grinch pussy’) on Twitter (12/2017 & 03/2018 for Grinch remake trailer)

- Hard to quantify outside of meme (no substring searches)

- Assuming -ussy forms remain a part of Internet language...

1. What, if any, implicit factors (phonological or other) regulate their formation?
2. Are they blends? If not, what else?
3. How do these forms fit in with, and what can they reveal about blending as a general morphological process in English? In language in general?
Outline

1. Introduction
2. Blending
3. Methodology & results
4. Discussion & future work
Blending
Properties of blends

- Definition: “intentional coinage of a new word by fusing parts of at least two source words of which either one is shortened in the fusion and/or where there is some form of phonemic or graphemic overlap of the source words” (Gries 2004)

- Three salient properties (Fradin 2015)
 - No preservation of lexical integrity: stems are rarely maintained intact & their alteration is variable
 - No fixed pattern of compositionality: head member is unpredictable
 - “Type hapaxes”: blends cannot form series (e.g. *élechien ‘dog breeding’)
 - ‘breeding’ + vache ‘cow’ → élevache ‘cow breeding’ but elevage ‘breeding’
Will it blend?

• -(u)ssy forms meet most but not all criteria: series-like, -(u)ssy almost suffixal

• Many forms are context-dependent for meaning (esp. first line of meme, picture, discussion thread)

• Forced combination regardless of overlap: \(<chick>en + p<uussy> \rightarrow chickussy \) (more common) vs. \(<Bloss>om + pu<sisy> \rightarrow blossy\)

• Potential avoidance of complete integration: \(platypus > platusssy, ?platypussy\)
Chunnel vs. brunch

- Gries’ (2004) Similarity Index (SI), proportionate amount of material contributed by each word:
 - \(<ch>a<nnel> + t<unnel> = 0.67\)
 - \(
eakfast + l<unch> = 0.3\)
- Average SI of intentional & error-driven blends \(\approx 0.5\), vs. random word pairings \(\approx 0.3\)

![Fig. 3: SI by blend type](image-url)
What selects constituent words in a blend?

Semantic motivation (*brunch*) vs. phonological selection *glitterati*, cf. Fradin’s (2015) criterion of overlap

<table>
<thead>
<tr>
<th>A. Trunc. = both</th>
<th>B. Trunc. = 1</th>
<th>C. Trunc. = 2</th>
<th>D. Trunc. = 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>+OV</td>
<td>+LIN</td>
<td>+OV</td>
<td>+LIN</td>
</tr>
<tr>
<td>daxpór</td>
<td>knáuros</td>
<td>Müllionärin</td>
<td>Paradies</td>
</tr>
<tr>
<td>daxáf × laxpór</td>
<td>knástos × áuros</td>
<td>Müll × Millionärin</td>
<td>Paradies × Diesel</td>
</tr>
<tr>
<td>+OV</td>
<td>-LIN</td>
<td>-OV</td>
<td>+LIN</td>
</tr>
<tr>
<td>dialügisch</td>
<td>carnibbleous</td>
<td>hypocritiquement</td>
<td>hypocritement × critique</td>
</tr>
<tr>
<td>dialogisch × Lüge</td>
<td>carnivorous</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td></td>
<td>nibble</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-OV</td>
<td>+LIN</td>
<td>-OV</td>
<td>+LIN</td>
</tr>
<tr>
<td>brunch</td>
<td>klabída</td>
<td>smothercate</td>
<td>sálkal</td>
</tr>
<tr>
<td>breakfast × lunch</td>
<td>klára × fúda</td>
<td>smother × suffocate</td>
<td>sál × kál</td>
</tr>
<tr>
<td>-OV</td>
<td>-LIN</td>
<td>-OV</td>
<td>-LIN</td>
</tr>
<tr>
<td>agitprop</td>
<td>—</td>
<td>—</td>
<td>rajolivissant</td>
</tr>
<tr>
<td>agitation × propag.</td>
<td>—</td>
<td>—</td>
<td>ravissernt × joli</td>
</tr>
</tbody>
</table>

Fig. 4: Typology of blends (Fradin 2015)
Extragrammaticality ≠ irregularity

- Debate over blending as morphological (e.g., Bat-El 1996, Plag 2003) vs. extragrammatical (e.g., Bauer 1988, Dressler 2000) process
- Extragrammaticality does not exclude influence of regular/universal linguistic forces, especially phonological for blends (Fradin, Montermini & Plénat 2009)
- Other peripheral (informal) processes evidence knowledge of grammar-external structures or forces, e.g., expletive infixation (McCarthy 1982), shitgibbons (Tessier & Becker 2018)
The shorter source word of a blend more likely to contribute more information for intelligibility (Kaunisto 2000)

Gries’ (2004) results confirm this + a (competing?) tendency for W_2 to contribute more:

<table>
<thead>
<tr>
<th>which word is larger?</th>
<th>which word contributes more to the blend?</th>
<th>row totals</th>
</tr>
</thead>
</table>
| $=$ | 47 (++)
| | 22 (--)
| | 53
| | 122 |
| source word$_1$ | 58
| | 45 (---)
| | 211 (+++)
| | 314 |
| source word$_2$ | 125
| | 316 (+++)
| | 111 (---)
| | 552 |
| column totals | 230
g| 383
| 375
| 988

Fig. 5: Contribution by length, phonemes
Methodology & results
Methodology

- Mini-corpus of 94 unique -(u)ssy forms from Youtube meme compilations, including:
 - Full referent
 - Deduced W_1 “base”
 - Novelty of blend (if $W_1 \neq$ referent)
 - Base contribution (no. graphemes & syllables)
 - W_2 contribution
 - Stress pattern of base

- Some educated guesses on bases (e.g. Vinny Vinesauce > vussy)

- Generous count of shared graphemes & phonemes between words, e.g. graphemes in (Bubble) Bass > bassy: $W_1 = 4$, $W_2 = 3$
Results (phonemes)

<table>
<thead>
<tr>
<th>Condition</th>
<th>Ph (W_1)</th>
<th>Ph (W_2)</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>$W_1 < W_2$</td>
<td>1.5</td>
<td>2.8</td>
<td>13</td>
</tr>
<tr>
<td>$W_1 = W_2$</td>
<td>1.6</td>
<td>2.9</td>
<td>24</td>
</tr>
<tr>
<td>$W_1 > W_2$</td>
<td>2.3</td>
<td>2.7</td>
<td>41</td>
</tr>
<tr>
<td>$W_1 < W_2$</td>
<td>2.3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>$W_1 = W_2$</td>
<td>2</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>$W_1 > W_2$</td>
<td>5.2</td>
<td>2.9</td>
<td>12</td>
</tr>
</tbody>
</table>

Table 1: Mean phoneme (Ph) contribution by novelty and relative length
Quite similar results from graphemes.

<table>
<thead>
<tr>
<th>Condition</th>
<th>Gr (W₁)</th>
<th>Gr (W₂)</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>W₁ < W₂</td>
<td>1.9</td>
<td>3.8</td>
<td>15</td>
</tr>
<tr>
<td>W₁ = W₂</td>
<td>1.7</td>
<td>3.8</td>
<td>24</td>
</tr>
<tr>
<td>W₁ > W₂</td>
<td>2.6</td>
<td>3.8</td>
<td>39</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Condition</th>
<th>Gr (W₁)</th>
<th>Gr (W₂)</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>W₁ < W₂</td>
<td>4</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>W₁ = W₂</td>
<td>2</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>W₁ > W₂</td>
<td>5.1</td>
<td>3.9</td>
<td>12</td>
</tr>
</tbody>
</table>

Table 2: Mean grapheme (Gr) contribution by novelty and relative length
To V or not to V?

<table>
<thead>
<tr>
<th>Shape</th>
<th>W₁ length</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Onset-only</td>
<td>4.7</td>
<td>46</td>
</tr>
<tr>
<td>Non-novel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1σ</td>
<td>5</td>
<td>29</td>
</tr>
<tr>
<td>2σ</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>Onset-only</td>
<td>3.5</td>
<td>2</td>
</tr>
<tr>
<td>Novel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1σ</td>
<td>6.3</td>
<td>9</td>
</tr>
<tr>
<td>2σ</td>
<td>7.3</td>
<td>4</td>
</tr>
</tbody>
</table>

Table 3: W₁ blend shape by average

W₁ lexeme length (phonemes)
Discussion & future work
Trends & strong factors

- Novelty and relative length \((W_1 > W_2)\) leads to greater inclusion of \(W_1\) material, though not necessarily less of \(W_2\).

- Fricatives & \(<r>\) may be special:
 - Fricatives in the base seem to encourage loss of \(<u>\) in \(W_2\) (e.g., \(Trisha > trissy\)) (8/14), though not categorically (e.g., \(Yoshi > yussy\))
 - \(<r>\) (in \(<rC>\)) may also lead to greater chance of \(<u>\)-drop (e.g., \(Barney > barsy\)) (3/14), again not categorical (\(starfish > stussy\))
• Lower sonority coda + higher sonority onset leads to greater W_1 contribution (e.g., *toadstool* > *toadstussy*) without exception, though half are novel (3/6)

• Stress is inconclusive, but initial unstressed syllable may lead to greater W_1 contribution (e.g. *explorer* > *explorussy*)

• V-initial words also inconclusive, need to be further tested
Future work

- Sources:
 - Expanded corpus study: Twitter “scraping” & processing
 - Judgment task
- Variation can be gauged for repeated subjects in corpus study (number of attestations and/or likes & retweets)
- Judgment task: what factors take priority in cases of conflict?
- Being less dependent on context, do novel forms behave as true blends (e.g., average SI)?
In novel blends (most recognisable), W_1 contributes more than W_2, against de Gries (2004)

- W_1 factors: length, syllable contact, novelty
- W_2 factors: fricative and/or <r> in W_1
- Additional test factors:
 - V- vs. C-initial
 - Stress pattern
 - Identical blend avoidance (e.g. Pewdiepie > pewssy, *pussy)
 - [ʊ] in W_1
Thank you!