Vowel-specific metrics of phonological nasalization in French
Canadian Linguistics Association

Michael Dow
Université de Montréal

May 28, 2017
Plan

1. Introduction

2. Phonetic background
 - Simple factors
 - Complex interactions

3. Experimental study

4. Discussion

5. References
Problématique

- Experimental phonological accounts & theory are only as good as their data.
Problématique

- Experimental phonological accounts & theory are only as good as their data.

- **Case study:** Many instrumental studies on nasal coarticulation in French show high rates of nasality on high vowels (esp. Delvaux et al. 2008, Rochet & Rochet 1991, Spears 2006) . . .
Problématique

- Experimental phonological accounts & theory are only as good as their data.

- **Case study:** Many instrumental studies on nasal coarticulation in French show high rates of nasality on high vowels (esp. Delvaux et al. 2008, Rochet & Rochet 1991, Spears 2006)...

- ...to the point where we might consider it phonological.
Experimental phonological accounts & theory are only as good as their data.

Case study: Many instrumental studies on nasal coarticulation in French show high rates of nasality on high vowels (esp. Delvaux et al. 2008, Rochet & Rochet 1991, Spears 2006)...

...to the point where we might consider it phonological.

But not all vowels are nasalized equal. How to fairly & accurately model nasality, then?
Goals

- Summarize the phonetic factors differentiating vowel qualities *vis-à-vis* ease of nasal coupling
Goals

- Summarize the phonetic factors differentiating vowel qualities *vis-à-vis* ease of nasal coupling
- Pilot a vowel-specific measurement of nasality for an instrumental corpus of French, and
Goals

- Summarize the phonetic factors differentiating vowel qualities *vis-à-vis* ease of nasal coupling
- Pilot a vowel-specific measurement of nasality for an instrumental corpus of French, and
- Compare these results against durational data to show that /i, y/ nasalization in French is phonological.
Plan

1. Introduction

2. Phonetic background
 - Simple factors
 - Complex interactions

3. Experimental study

4. Discussion

5. References
The high > low parameter

- **Aerodynamics**: High vowels produced with high degree of intraoral pressure → greater nasal airflow (e.g., Clarke & Mackiewicz-Krassowska 1977, Shosted 2012) and less velopharyngeal opening (e.g., Al-Bamerni 1983).
Simple factors

The high > low parameter

- **Aerodynamics:** High vowels produced with high degree of intraoral pressure → greater nasal airflow (e.g., Clarke & Mackiewicz-Krassowska 1977, Shosted 2012) and less velopharyngeal opening (e.g., Al-Bamerni 1983).

- **Acoustics:** Same amount of nasal coupling has stronger effects on high vowels (House & Stevens 1956).
Simple factors

The high > low parameter

- **Aerodynamics:** High vowels produced with high degree of intraoral pressure → greater nasal airflow (e.g., Clarke & Mackiewicz-Krassowska 1977, Shosted 2012) and less velopharyngeal opening (e.g., Al-Bamerni 1983).

- **Acoustics:** Same amount of nasal coupling has stronger effects on high vowels (House & Stevens 1956).

- **Perception:** Low vowels require much greater nasal coupling and time to be perceived as nasal, compared with high vowels (e.g., Maeda 1982).
Simple factors

The low > high parameter

- **Articulation:** Inherent velic position covaries with vowel height (e.g., Henderson 1984) — though not necessarily universally (e.g., Amelot & Rossato 2006).
Articulation: Inherent velic position covaries with vowel height (e.g., Henderson 1984) — though not necessarily universally (e.g., Amelot & Rossato 2006).

Lower position on low vowels \rightarrow easier to nasalize (e.g., Straka 1955)?
Simple factors

The low > high parameter

- **Articulation**: Inherent velic position covaries with vowel height (e.g., Henderson 1984) — though not necessarily universally (e.g., Amelot & Rossato 2006).

- Lower position on low vowels → easier to nasalize (e.g., Straka 1955)?

- **BUT** also leads to “leakage” in oral contexts (Bell-Berti 1973, Chen & Wang 1975).
What’s the problem?

If some vowels are easier to nasalize than others, similar percentages of coarticulation may not be directly comparable.
What’s the problem?

- If some vowels are easier to nasalize than others, similar percentages of coarticulation may not be directly comparable.

- Conflicting factors may lead to conflicting evidence, depending on the type of instrument used — for instance, articulatory could overreport low vowels, while aerodynamic overreports high.
What’s the problem?

- If some vowels are easier to nasalize than others, similar percentages of coarticulation may not be directly comparable.

- Conflicting factors may lead to conflicting evidence, depending on the type of instrument used — for instance, articulatory could overreport low vowels, while aerodynamic overreports high.

- **Solution:** Let’s let each vowel quality define its own nasal threshold.
Duration favours low vowels

- Low vowels frequently longest in experimental studies (cf. Hajek & Maeda 2000 for references).
Complex interactions

Duration favours low vowels

- Low vowels frequently longest in experimental studies (cf. Hajek & Maeda 2000 for references).
- Low vowels proposed to be inherently longest (cf. Laver 1994, Lehiste 1970) and most sonorous (de Lacy 2006).
Complex interactions

Duration favours low vowels

- Low vowels frequently longest in experimental studies (cf. Hajek & Maeda 2000 for references).
- Low vowels proposed to be inherently longest (cf. Laver 1994, Lehiste 1970) and most sonorous (de Lacy 2006).
- Languages show a diachronic preference for long nasal vowels (Hajek 1997).
Duration favours low vowels

- Low vowels frequently longest in experimental studies (cf. Hajek & Maeda 2000 for references).
- Low vowels proposed to be inherently longest (cf. Laver 1994, Lehiste 1970) and most sonorous (de Lacy 2006).
- Languages show a diachronic preference for long nasal vowels (Hajek 1997).
Duration favours low vowels

- Low vowels frequently longest in experimental studies (cf. Hajek & Maeda 2000 for references).
- Low vowels proposed to be inherently longest (cf. Laver 1994, Lehiste 1970) and most sonorous (de Lacy 2006).
- Languages show a diachronic preference for long nasal vowels (Hajek 1997).
- Lower aperture may then favour nasality.
High vowels are the shortest in the same literature, and (reminder) the easiest to nasalize from most perspectives.
Complex interactions

Duration confounds high vowels
Or: Crouching tiger, hidden mechanical nasalization

- High vowels are the shortest in the same literature, and (reminder) the easiest to nasalyze from most perspectives.
- The velum as a sluggish articulator (Bell-Berti 1993, Ohala 1975), with oro-nasal transition times around 250 msec. (e.g., Bell-Berti 1980, Dalston & Seaver 1990).
Complex interactions

What’s the problem again?

- “Sloppy” articulation may then lead to inflated percentages on high vowels – unintentionally but largely nasal.
What’s the problem again?

“Sloppy” articulation may then lead to inflated percentages on high vowels – unintentionally but largely nasal.

Reports of significant high vowel nasalization in French may be an artefact of this interaction.
Complex interactions

What's the problem again?

- “Sloppy” articulation may then lead to inflated percentages on high vowels – unintentionally but largely nasal.

- Reports of significant high vowel nasalization in French may be an artefact of this interaction.

- Solution: Let’s see how nasality interacts with duration, vowel by vowel (à la Solé 1992, 2007).
Plan

1. Introduction

2. Phonetic background
 - Simple factors
 - Complex interactions

3. Experimental study

4. Discussion

5. References
Methodology

- **Participants:** 20 native French speakers (Finistère and Somme departments)
Methodology

- **Participants:** 20 native French speakers (Finistère and Somme departments)

- **Instrumentation:** Glottal Enterprises nasometer (NAS-1 SEP Clinic)
Methodology

- **Participants:** 20 native French speakers (Finistère and Somme departments)
- **Instrumentation:** Glottal Enterprises nasometer (NAS-1 SEP Clinic)
- **Materials:** Reading list of 3-word expressions (article + noun + adjective):
Methodology

- **Participants:** 20 native French speakers (Finistère and Somme departments)
- **Instrumentation:** Glottal Enterprises nasometer (NAS-1 SEP Clinic)
- **Materials:** Reading list of 3-word expressions (article + noun + adjective):
 - Target vowel: Oral (/a, e, ø, o, i, y, u/) or nasal (/ã, ë, ë, ø/) in pre-nasal (typically /n/) or non-nasal contexts (typically word-final)
Methodology

- **Participants:** 20 native French speakers (Finistère and Somme departments)

- **Instrumentation:** Glottal Enterprises nasometer (NAS-1 SEP Clinic)

- **Materials:** Reading list of 3-word expressions (article + noun + adjective):
 - Target vowel: Oral (/a, e, ø, o, i, y, u/) or nasal (/ã, ë, ë, ñ/) in pre-nasal (typically /n/) or non-nasal contexts (typically word-final)
 - Examples:
Methodology

- **Participants:** 20 native French speakers (Finistère and Somme departments)
- **Instrumentation:** Glottal Enterprises nasometer (NAS-1 SEP Clinic)
- **Materials:** Reading list of 3-word expressions (article + noun + adjective):
 - Target vowel: Oral (/a, e, ø, o, i, y, u/) or nasal (/ã, ë, ë, ã/) in pre-nasal (typically /n/) or non-nasal contexts (typically word-final)
 - Examples:
 - le certificat secret = a#s
Methodology

- **Participants:** 20 native French speakers (Finistère and Somme departments)

- **Instrumentation:** Glottal Enterprises nasometer (NAS-1 SEP Clinic)

- **Materials:** Reading list of 3-word expressions (article + noun + adjective):
 - Target vowel: Oral (/a, e, ø, o, i, y, u/) or nasal (/ã, ë, ã, ã/) in pre-nasal (typically /n/) or non-nasal contexts (typically word-final)
 - Examples:
 1. *le certificat secret = a#s*
 2. *la partisane sarcastique = an#s*
Methodology

- **Participants:** 20 native French speakers (Finistère and Somme departments)

- **Instrumentation:** Glottal Enterprises nasometer (NAS-1 SEP Clinic)

- **Materials:** Reading list of 3-word expressions (article + noun + adjective):
 - Target vowel: Oral (/a, e, o, i, y, u/) or nasal (/ã, ë, ɔ, ãë/) in pre-nasal (typically /n/) or non-nasal contexts (typically word-final)
 - Examples:
 1. *le certificat secret = a#s*
 2. *la partisane_sarcastique = an#s*
 3. *le client_secret = ã#s*
Methodology

- **Participants**: 20 native French speakers (Finistère and Somme departments)

- **Instrumentation**: Glottal Enterprises nasometer (NAS-1 SEP Clinic)

- **Materials**: Reading list of 3-word expressions (article + noun + adjective):
 - Target vowel: Oral (/a, e, o, i, y, u/) or nasal (/ã, ë, ɔ, ã/) in pre-nasal (typically /n/) or non-nasal contexts (typically word-final)
 - Examples:
 1. *le certificat secret* = a#s
 2. *la partisane sarcastique* = an#s
 3. *le client secret* = ã#s

- **Procedure**: Self-paced reading task. List(s) randomized 3 times for each speaker.
Measurements & Calculations

- Energy of oral and nasal channels of each vowel (2,759 total) taken at 5 msec steps, also total duration
Measurements & Calculations

- Energy of oral and nasal channels of each vowel (2,759 total) taken at 5 msec steps, also total duration
- *Nasal threshold* (Vowel- and speaker-specific): mean nasal energy of each oral vowel type in oral contexts + 2sd
Measurements & Calculations

- Energy of oral and nasal channels of each vowel (2,759 total) taken at 5 msec steps, also total duration
- *Nasal threshold* (Vowel- and speaker-specific): mean nasal energy of each oral vowel type in oral contexts + 2sd
- *Nasal phase*: no. points whose nasal energy > nasal threshold (of most interest for vowels in pre-nasal settings)
Measurements & Calculations

- Energy of oral and nasal channels of each vowel (2,759 total) taken at 5 msec steps, also total duration

- *Nasal threshold* (Vowel- and speaker-specific): mean nasal energy of each oral vowel type in oral contexts + 2sd

- *Nasal phase*: no. points whose nasal energy > nasal threshold (of most interest for vowels in pre-nasal settings)

- Hypothetical example:
 - Mean nasal energy of all /i/ vowels of speaker x in non-nasal settings = 0.023 Pa²·s; sd = 0.019
 - x’s /i/ nasal threshold = 0.061
 - How many points of /i/ in /in/ exceed? Overall V length?
Results

Average vowel nasality threshold & standard deviation

<table>
<thead>
<tr>
<th>Vowel</th>
<th>Threshold</th>
<th>sd</th>
</tr>
</thead>
<tbody>
<tr>
<td>/a/</td>
<td>0.015</td>
<td>0.014</td>
</tr>
<tr>
<td>/e/</td>
<td>0.021</td>
<td>0.018</td>
</tr>
<tr>
<td>/ø/</td>
<td>0.032</td>
<td>0.032</td>
</tr>
<tr>
<td>/o/</td>
<td>0.024</td>
<td>0.027</td>
</tr>
<tr>
<td>/i/</td>
<td>0.023</td>
<td>0.019</td>
</tr>
<tr>
<td>/y/</td>
<td>0.024</td>
<td>0.017</td>
</tr>
<tr>
<td>/u/</td>
<td>0.026</td>
<td>0.022</td>
</tr>
</tbody>
</table>

- Low vowels appear to have lower threshold, with fewer differences within & among mid and high vowels (note /ø/, though).
Results

Average vowel nasality threshold & standard deviation

<table>
<thead>
<tr>
<th>Vowel</th>
<th>Threshold</th>
<th>sd</th>
</tr>
</thead>
<tbody>
<tr>
<td>/a/</td>
<td>0.015</td>
<td>0.014</td>
</tr>
<tr>
<td>/e/</td>
<td>0.021</td>
<td>0.018</td>
</tr>
<tr>
<td>/ø/</td>
<td>0.032</td>
<td>0.032</td>
</tr>
<tr>
<td>/o/</td>
<td>0.024</td>
<td>0.027</td>
</tr>
<tr>
<td>/i/</td>
<td>0.023</td>
<td>0.019</td>
</tr>
<tr>
<td>/y/</td>
<td>0.024</td>
<td>0.017</td>
</tr>
<tr>
<td>/u/</td>
<td>0.026</td>
<td>0.022</td>
</tr>
</tbody>
</table>

- Low vowels appear to have lower threshold, with fewer differences within & among mid and high vowels (note /ø/, though).
- **NB:** Some speakers show greater diversity among thresholds than others.
Nasal phase duration increases only for high front vowels, suggesting gestural anchorage with respect to V, not N.
Plan

1. Introduction

2. Phonetic background
 - Simple factors
 - Complex interactions

3. Experimental study

4. Discussion

5. References
Findings

- Vowel-specific thresholds appear at first glance useful, though unclear how well they reflect phonetic pressures.
Findings

- Vowel-specific thresholds appear at first glance useful, though unclear how well they reflect phonetic pressures.
- Even after attempting to remove acoustic/aerodynamic bias, high (front) vowels demonstrate high levels of nasal coarticulation.
Findings

- Vowel-specific thresholds appear at first glance useful, though unclear how well they reflect phonetic pressures.
- Even after attempting to remove acoustic/aerodynamic bias, high (front) vowels demonstrate high levels of nasal coarticulation.
- Though on average shortest in the corpus, these vowels demonstrate a nasal phase increasing proportionately to their overall duration, suggesting a deliberate, phonological function.
Open questions

\- /i, y/ nasalization seemingly capped around 50%. Why, and does phonology need to take this into account?
Open questions

- /i,y/ nasalization seemingly capped around 50%. Why, and does phonology need to take this into account?
- Progressive nasalization is more pervasive and intense in French. Is it phonological as well?
Open questions

- /i,y/ nasalization seemingly capped around 50%. Why, and does phonology need to take this into account?

- Progressive nasalization is more pervasive and intense in French. Is it phonological as well?

- Does syllable structure matter, e.g., what about internal /i.n/?
Fin
Plan

1. Introduction

2. Phonetic background
 - Simple factors
 - Complex interactions

3. Experimental study

4. Discussion

5. References
Thanks to the colleagues and the audience members of NAPhC 2016 & mfm 2017 who have interacted with me on this topic. Much gratitude in particular to Karthik Durvasula for his insights concerning nasal thresholds and vowel quality; all errors in the implementation remain my own. Data collection funded by the National Science Foundation, Doctoral Dissertation Grant #1360758.
References

Dow Vowel-specific metrics of phonological nasalization in French

